Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MOM! My algorithms SUCK
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Abe Stanway
September 19, 2013
Programming
15
2.8k
MOM! My algorithms SUCK
Given at Monitorama.eu 2013 in Berlin.
http://vimeo.com/75183236
Abe Stanway
September 19, 2013
Tweet
Share
More Decks by Abe Stanway
See All by Abe Stanway
Building Data Driven Organizations
astanway
1
240
A Deep Dive into Monitoring with Skyline
astanway
6
1.9k
Bring the Noise: Continuously Deploying Under a Hailstorm of Metrics
astanway
34
8.1k
Data Visualization in the Trenches
astanway
5
730
Gifs as Language
astanway
2
910
Your API is a Product
astanway
3
1k
Zen and the Art of Writing Commit Logs
astanway
3
850
Other Decks in Programming
See All in Programming
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.5k
AgentCoreとHuman in the Loop
har1101
5
250
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
630
CSC307 Lecture 03
javiergs
PRO
1
490
AtCoder Conference 2025
shindannin
0
1.1k
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
330
dchart: charts from deck markup
ajstarks
3
1k
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
Featured
See All Featured
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
68
Rails Girls Zürich Keynote
gr2m
96
14k
A better future with KSS
kneath
240
18k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
The Spectacular Lies of Maps
axbom
PRO
1
530
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Transcript
@abestanway MOM! my algorithms SUCK
i know how to fix monitoring once and for all.
a real human physically staring at a single metric 24/7
that human will then alert a sleeping engineer when her
metric does something weird
Boom. Perfect Monitoring™.
this works because humans are excellent visual pattern matchers* *there
are, of course, many advanced statistical applications where signal cannot be determined from noise just by looking at the data.
can we teach software to be as good at simple
anomaly detection as humans are?
let’s explore.
anomalies = not “normal”
humans can tell what “normal” is by just looking at
a timeseries.
“if a datapoint is not within reasonable bounds, more or
less, of what usually happens, it’s an anomaly” the human definition:
there are real statistics that describe what we mentally approximate
None
“what usually happens” the mean
“more or less” the standard deviation
“reasonable bounds” 3σ
so, in math speak, a metric is anomalous if the
absolute value of latest datapoint is over three standard deviations above the mean
we have essentially derived statistical process control.
pioneered in the 1920s. heavily used in industrial engineering for
quality control on assembly lines.
traditional control charts specification limits
grounded in exchangeability past = future
needs to be stationary
produced by independent random variables, with well- defined expected values
this allows for statistical inference
in other words, you need good lookin’ timeseries for this
to work.
normal distribution: a more concise definition of good lookin’ μ
34.1% 13.6% 2.1% 34.1% 13.6% μ - σ 2.1%
if you’ve got a normal distribution, chances are you’ve got
an exchangeable, stationary series produced by independent random variables
99.7% fall under 3σ
μ 34.1% 13.6% 2.1% 34.1% 13.6% 2.1% μ - σ
if your datapoint is in here, it’s an anomaly.
when only .3% lie above 3σ...
...you get a high signal to noise ratio...
...where “signal” indicates a fundmental state change, as opposed to
a random, improbable variation.
a fundamental state change in the process means a different
probability distribution function that describes the process
determining when probability distribution function shifts have occurred, as early
as possible. anomaly detection:
μ 1
μ 1 a new PDF that describes a new process
drilling holes sawing boards forging steel
snapped drill bit teeth missing on table saw steel, like,
melted
processes with well planned expected values that only suffer small,
random deviances when working properly...
...and massive “deviances”, aka, probability function shifts, when working improperly.
the bad news:
server infrastructures aren’t like assembly lines
systems are active participants in their own design
processes don’t have well defined expected values
they aren’t produced by genuinely independent random variables.
large variance does not necessarily indicate poor quality
they have seasonality
skewed distributions! less than 99.73% of all values lie within
3σ, so breaching 3σ is not necessarily bad 3σ possibly normal range
the dirty secret: using SPC-based algorithms results in lots and
lots of false positives, and probably lots of false negatives as well
no way to retroactively find the false negatives short of
combing with human eyes!
how do we combat this?* *warning! ideas!
we could always use custom fit models...
...after all, as long as the *errors* from the model
are normally distributed, we can use 3σ
Parameters are cool! a pretty decent forecast based on an
artisanal handcrafted model
but fitting models is hard, even by hand.
possible to implement a class of ML algorithms that determine
models based on distribution of errors, using Q-Q plots
Q-Q plots can also be used to determine if the
PDF has changed, although hard to do with limited sample size
consenus: throw lots of different models at a series, hope
it all shakes out.
[yes] [yes] [no] [no] [yes] [yes] = anomaly!
of course, if your models are all SPC-based, this doesn’t
really get you anywhere
use exponentially weighted moving averages to adapt faster
fourier transforms to detect seasonality
second order anomalies: is the series “anomalously anomalous”?
...this is all very hard.
so, we can either change what we expect of monitoring...
...and treat it as a way of building noisy situational
awareness, not absolute directives (alerts)...
...or we can change what we expect out of engineering...
...and construct strict specifications and expected values of all metrics.
neither are going to happen.
so we have to crack this algorithm nut.
...ugh. @abestanway