Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
待ち行列のシミュレーション/queue_simulation
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
florets1
July 13, 2023
Programming
0
330
待ち行列のシミュレーション/queue_simulation
florets1
July 13, 2023
Tweet
Share
More Decks by florets1
See All by florets1
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
450
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
51
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
130
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
83
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
430
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
450
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.5k
直積は便利/direct_product_is_useful
florets1
3
450
butterfly_effect/butterfly_effect_in-house
florets1
1
270
Other Decks in Programming
See All in Programming
Grafana:建立系統全知視角的捷徑
blueswen
0
330
Fluid Templating in TYPO3 14
s2b
0
130
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
430
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
組織で育むオブザーバビリティ
ryota_hnk
0
170
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.3k
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
170
AtCoder Conference 2025
shindannin
0
1.1k
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
550
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6k
Implementation Patterns
denyspoltorak
0
280
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
How GitHub (no longer) Works
holman
316
140k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
80
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Faster Mobile Websites
deanohume
310
31k
Done Done
chrislema
186
16k
Leo the Paperboy
mayatellez
4
1.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Transcript
1 2023.07.15 Tokyo.R #107 待ち行列のシミュレーション
2 待ち行列 平均到着スピード 15台/時 到着時刻 開始時刻 待ち時間 完了時刻 到着間隔 平均洗車スピード
20台/時 サービス時間
3 平均待ち時間(解析解) 平均到着スピード = 𝜆 = 15/60[台/分] 平均洗車スピード = 𝜇
= 20/60[台/分] 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均待ち時間 = 𝜌 1 − 𝜌 1 𝜇 = 9分
4 実は解析解から得られる情報は少ない ← 9分 何番目の車か 平均待ち時間(分)
5 シミュレーション(車100台分) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 単位:分
6 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
7 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
8 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔
9 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 開始時刻 = max(1つ前の車の完了時刻, 到着時刻)
10 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
11 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 完了時刻 = 開始時刻 + サービス時間
12 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 待ち時間 = 開始時刻 – 到着時刻
13 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
14 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
15 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
16 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
17 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔 開始時刻 = max(1つ前の車の完了時刻, 到着時刻) アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
18 シミュレーション(append) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
19 シミュレーション(append99回) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
20 待ち時間に興味がある 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
21 100台それぞれの待ち時間 何番目の車か 待ち時間(分)
22 乱数なので実行する度に変化する
23 1000回やってみた ← 9分 何番目の車か 平均待ち時間(分) 考察 先頭集団は待ち時間が少ない。後になるほど解析解の 9分に近づいていく。
24 平均待ち時間の分布 車100台の平均待ち時間 車100台の平均待ち時間を求めるシミュレーションを1000回行ったヒストグラム ← 9分 考察 多くの場合、待ち時間は9分より短いが、20分を超え ることもあるようだ。50分待ちという極端な値もある。
25 平均アイドル率(解析解) 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均アイドル率
= 1 − 𝜌 = 0.25
26 平均アイドル率の分布 車100台の平均アイドル率 車100台の平均アイドル率を求めるシミュレーションを1000回行ったヒストグラム 0.25→ 考察 解析解の0.25より大きい傾向だ。
27 まとめ • 解析解はシステムが長時間稼働した後の安定した状態。 • シミュレーションでは、待ち行列が発生するまでの 「ウォームアップ期間」を再現できる。 • シミュレーションでは分布も得られる。