Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Search
jyoshise
December 13, 2022
Technology
0
610
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Cloud Native Database Meetup #5 のLT資料です。
jyoshise
December 13, 2022
Tweet
Share
More Decks by jyoshise
See All by jyoshise
米軍Platform One / Black Pearlに学ぶ極限環境DevSecOps
jyoshise
2
700
AIがコード書きすぎ問題にはAIで立ち向かえ
jyoshise
14
13k
Nutanix Kubernetes PlatformでLLMを動かす話
jyoshise
0
480
CNDT2023_Nutanix_jyoshise
jyoshise
0
520
クラウドネイティブインフラおじさんがNutanixに入社することになったので以下略
jyoshise
0
1.2k
全てがクラウドネイティブで良いのか。その謎を明らかにすべく我々はエンプラの奥地に向かった
jyoshise
8
5.9k
Kubeadmによるクラスタアップグレード・その光と闇
jyoshise
3
4.8k
Kubernetes Meetup Tokyo #26 / Recap: Kubecon Keynote by Walmart
jyoshise
6
3.4k
Kubernetes Meetup Tokyo #20 / KubeCon Recap: Tekton
jyoshise
0
220
Other Decks in Technology
See All in Technology
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
Cosmos World Foundation Model Platform for Physical AI
takmin
0
980
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
520
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
230
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
120
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.4k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
440
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Making Projects Easy
brettharned
120
6.6k
From π to Pie charts
rasagy
0
130
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Docker and Python
trallard
47
3.7k
HDC tutorial
michielstock
1
400
Tell your own story through comics
letsgokoyo
1
810
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Abbi's Birthday
coloredviolet
1
4.8k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Transcript
@jyoshise これは分散KVS? NOSQL? NEWSQL? 謎の HARPERDBにせまる
None
3
4 • LMDB (Lightning Memory-Mapped Database) とは: • もともとはOpenLDAPプロジェクトのために作られたOSS •
CloudflareがDNS用のデータストアとして使っていたりとか • Memory-mapped fileを使用 • 軽量 • 高速 • ACID準拠 • 読み出しと書き込みに高度に最適化された追記型B+tree構造 • トランザクションをサポート • 書き込みロック処理→デッドロックは発生しない • Full MVCC→ReaderとWriterは競合しない • Dup-sorted keys UNDERLYING STORAGE MECHANISM OF HARPERDB: LMDB
5 • JSONやSQLでデータを取り込み、1つの データスキーマに格納できるようにしたい。 • マルチモデルデータベースでよくある、1つ のデータベース内でモデル間でデータが重複 してしまうという問題を解決する • Same
data set • Common services/core operation • No data duplication for different models • SQL, NoSQL, CSV, etc… all talking to HarperDB core and same data set OPERATIONAL MODEL
6
7 • テーブルを作成するときはハッシュAttribute名(Primary key)を定義するだけでよい • 各テーブルはディスク上に1つのデータファイル(.mdb)であり、すべてのインデックス はデータファイル内の「サブデータベース」 • データ書き込み(挿入、更新、削除)は「マイクロバッチ処理」とし、トランザクション の一括実行を可能にすることで、より高いパフォーマンスを実現
STORAGE HIERARCHY
8 • コア数 • インストールされたインスタンスで利用可能なコア数に合わせてスケール可能 –Raspberry Pi から大規模ベアメタルサーバーまで –大規模環境ではHarperDBを並列プロセスで実行 •
プロセス数=利用可能なコアの数 • ディスク • ストレージは無制限→テーブルはインスタンスのストレージの利用可能な容量まで成長 SCALING WITH HARDWARE
9 • Read/Write Optimized • 1ノードあたり毎秒20Kの書き込みが可能 • 読み込みと書き込みが独立したノンブロッキングのグローバルレプリケーション(MVCC)を110msで実行できる • High
Throughput • HarperDB 1ノードで120Kリクエスト/秒の処理能力 • Storage Engine • ACID準拠 • Attributesはuniversally indexed by default →効率的な格納と検索が可能 PERFORMANCE & BENCHMARKS
10
11
12
13 • 各ノードはトランザクションとストレージをACIDに他のノードから独立して処理 • 各ノードは、他のノードに接続し、任意のテーブルに対してトランザクションを送受信で きる • スキーマメタデータとトランザクションを、定義されたトポロジーに基づき決定論的にリ アルタイムで送信 •
すべてのノードがネットワークやサーバーの停止からキャッチアップでき、”dead on the floor”トランザクションは発生しない • 一貫性を保つためにタイムスタンプを利用→更新のシナリオでは最新のトランザクション を優先(古い更新があった場合、それは破棄される) • 再接続シナリオでは、HarperDBノードは自動的にオフラインだった時間分のキャッチアッ プペイロードを要求し、送信 HARPERDB: DISTRIBUTED COMPUTE & STORAGE
14
15 HarperDBは • むちゃくちゃ速い(らしい) • DB設計をほとんど考えなくてよいので楽 • CSVなりJSONなりでデータをぶっこめばインデックスしてくれて、あとはSQLで 読み書きできる •
Geo distributionはConsistencyの点でまだ開発途上のようだが、読み書き性能を優先す る用途には使えそう • クラウドのDBaaSもあるのでとっつきやすい • https://harperdb.io/ • 小さいインスタンスなら無料でお試しできます • オンプレにデプロイしてクラウドで管理もできる まとめ