Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Floating Point 101
Search
kida
February 06, 2013
Programming
7
320
Floating Point 101
A very very basic introduction to FP.
With some inaccuracies.
kida
February 06, 2013
Tweet
Share
More Decks by kida
See All by kida
Cognitive Supervision for Laser Phonomicrosurgery
kida
0
55
Towards Cognitive Supervision in robot-assisted surgery
kida
0
190
Other Decks in Programming
See All in Programming
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
100
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
190
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
200
Raku Raku Notion 20260128
hareyakayuruyaka
0
350
CSC307 Lecture 01
javiergs
PRO
0
690
CSC307 Lecture 03
javiergs
PRO
1
490
Apache Iceberg V3 and migration to V3
tomtanaka
0
170
Package Management Learnings from Homebrew
mikemcquaid
0
230
CSC307 Lecture 09
javiergs
PRO
1
840
Grafana:建立系統全知視角的捷徑
blueswen
0
330
AgentCoreとHuman in the Loop
har1101
5
240
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
77
5.3k
The Limits of Empathy - UXLibs8
cassininazir
1
220
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Test your architecture with Archunit
thirion
1
2.2k
A designer walks into a library…
pauljervisheath
210
24k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Context Engineering - Making Every Token Count
addyosmani
9
660
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The browser strikes back
jonoalderson
0
390
Transcript
FLOATING 101 POINT
FLOATING 100.999998 POINT
engineers we are
researchers we are
3.14159265358979 3238462643383279 5028841971693993 7510582097494459 2307816406286208 NUMBERS WE PLAY WITH ALL
DAY LONG
well, sometimes even at night. (yawn).
So, what is a floating point?
A floating point is ± D 1 .D 2 D
3 ···D n x Be
A floating point is sign ± D 1 .D 2
D 3 ···D n x Be
A floating point is significand ± D 1 .D 2
D 3 ···D n x Be
A floating point is base ± D 1 .D 2
D 3 ···D n x Be
A floating point is exponent ± D 1 .D 2
D 3 ···D n x Be
A floating point represents ± (D 1 + D 2
* B-1 + D 3 * B-2 + … + D n * B(n-1)) * Be
For example + 3.14 x 100 = (3 + 1*0.1
+ 4*0.01)*1 = 3.14
The point can float ! + 3.14 x 10-1 =
0.314
The point can float ! + 3.14 x 10+1 =
31.4
What if B = 2 ? + 1.00 x 2+2
= 4.0
Like machines do. http://grouper.ieee.org/groups/754/
Normalization of floating point
Multiple representations + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + 0.01 x 22 = 1.0 + 0.10
x 21 = 1.0 + 1.00 x 20 = 1.0
Normalized representation + (1.)000 x 20 1 is omitted
Normalized representation + (1.)000 x 20 there's room for an
extra digit!
Excess-127 representation -127 → 0 -126 → +1 … -1
→ +126 0 → +127
#include <float.h> FLT_MIN, FLT_MAX, ... #include <math.h> M_PI, M_E, NAN,
INFINITY, ...
Why no exact representation for 0.1?
FLOATING POINT REAL NUMBERS is used to represent
FLOATING POINT RATIONAL NUMBERS denotes a (finite) subset of
0.1 cannot be expressed as a power of 2 +
??? x 2??
+ 00 x 20 1 It's also a matter of
precision
+ 01 x 20 1 1.25 It's also a matter
of precision
+ 10 x 20 1 1.25 1.5 It's also a
matter of precision
+ 11 x 20 1 1.25 1.5 1.75 It's also
a matter of precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 11 x 20 π/2 It's also a matter of
precision
+ 00 x 21 1 1.25 1.5 1.75 2.0 Not
just a matter of precision or basis...
+ 01 x 21 1 1.25 1.5 1.75 2.0 2.5
Not just a matter of precision or basis...
+ 10 x 21 1 1.25 1.5 1.75 2.0 2.5
3.0 Not just a matter of precision or basis...
Like death and taxes rounding errors are a fact of
life. http://wiki.octave.org/FAQ
+ 110 x 21 Operands that differ greatly + 100
x 2-2
+ 110000 x 21 Operands that differ greatly + 000101
x 21
+ 110000 x 21 Operands that differ greatly + 000101
x 21 = 110
None
Operands that are really close + 111 x 21 -
110 x 21 = 001 x 21
Operands that are really close + 111 x 21 -
110 x 21 = 100 x 2-2
None
Fixed point representation + 100.001010 = 22 + 2-3+ 2-5
= 4.15625
POINT WHAT'S THE WITH FLOATING
FP ARITHMETIC IS FAST Embedded in HW.
Single precision up to ~10+38. FP REPRESENTS A WIDE RANGE
HE APPROVES FP
Anyway, errors still there.
Okay, what about increasing the number of digits use decimal
representations estimating errors think before you type
More digits, please! double (52 significant bits) long double (112
significant bits) arbitrary precision * * language support needed
Use decimal representations! decimal (C# only) BigDecimal (Java only) std::decimal
(C++, coming soon)* * after IEEE-754 2008
Estimate the error of your algo rel_err = fabs(f –
fp) / f
Use float to represent time float time; while (true) time
+= 0.20;
Use float to represent time float time; while (true) time
+= 0.20; This is BAD. And you should feel BAD.
Compare float numbers (a == b)
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
Compare float numbers (a == b) fabs(a -b) <= FLT_EPSILON
fabs(a - b) <= max(fabs(a),fabs(b)) * pc
There is no silver bullet.
Use libraries (when available).
Vector addition (naive) float t[SIZE]; float result; for (i =
0; i < SIZE; ++i) result += t[i];
RESCUE GNU GSL TO THE
None
that's all folks! @lorisfichera – https://kid-a.github.com References and source code
available at https://github.com/kid-a/floating-point-seminar Credits Font: Yanone Kaffeesatz (http://www.yanone.de/typedesign/kaffeesatz/)