Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セミパラメトリック推論の基礎の復習
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Daisuke Yoneoka
November 14, 2023
Research
0
120
セミパラメトリック推論の基礎の復習
Daisuke Yoneoka
November 14, 2023
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理モデル15
kingqwert
0
36
感染症の数理モデル14
kingqwert
0
120
感染症の数理モデル13
kingqwert
0
46
感染症の数理モデル12
kingqwert
0
120
感染症の数理モデル11
kingqwert
0
120
感染症の数理セミナー_10_.pdf
kingqwert
0
140
感染症の数理モデル9
kingqwert
0
110
感染症の数理モデル8
kingqwert
0
120
感染症の数理モデル7
kingqwert
0
120
Other Decks in Research
See All in Research
LiDARセキュリティ最前線(2025年)
kentaroy47
0
140
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
240
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
R&Dチームを起ち上げる
shibuiwilliam
1
170
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
130
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
140
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
430
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.6k
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
480
20年前に50代だった人たちの今
hysmrk
0
140
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
The World Runs on Bad Software
bkeepers
PRO
72
12k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Writing Fast Ruby
sferik
630
62k
Embracing the Ebb and Flow
colly
88
5k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Speed Design
sergeychernyshev
33
1.5k
From π to Pie charts
rasagy
0
130
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
ηϛύϥϝτϦοΫਪͷجૅͷ෮श Daisuke Yoneoka September 29, 2014
Notations جຊతʹ Tsiatis,2006 ʹै͏. Θ͔Μͳ͔ͬͨΒࣗͰௐͯͶ! ϕΫτϧߦྻଠࣈʹͯ͠ͳ͍͚Ͳ, ͦࣗ͜Ͱิ͍ͬͯͩ͘͞. σʔλ i.i.d Ͱ
Zi = (Zi1, . . . , Zim) ∈ Rm αϯϓϧαΠζ n ਓ. i.e., Z1, . . . , Zn φ(Z) Өڹؔ u(Zi, θ) ਪఆؔ Լ͖ࣈͷ eff (ۙ) ༗ޮ (efficient) ͱ͍͏ҙຯ
ηϛύϥϝτϦοΫਪͱʁ Zi ͷີ͕ؔηϛύϥϝτϦοΫϞσϧʹै͏ͱ S = {p(z : θ, η)|θ ∈
Θ ⊂ Rr, η ∈ H} θ ༗ݶ࣍ݩͷڵຯ͋ΔύϥϝλͰ, η ແݶ࣍ݩͷͲ͏Ͱ͍͍ύ ϥϝλ (ہ֎ (nuisance) ύϥϝʔλʔ). ηϛύϥϝτϦοΫਪ: ͜ͷͱͰ θ ͷ࠷ྑͷਪఆྔ (RAL ਪఆ ྔ) ΛͱΊΔ͜ͱ
Өڹؔ θ ͳΜͰ͍͍͔Β࠷ྑΛݟ͚ͭΔͱ͍͏ͷແཧήʔ → Ϋϥε Λݶఆͯͦ͜͠Ͱݟ͚ͭΔ! (౷ܭͰΑ͘ΔΑͶ) Өڹؔ: ਪఆྔ ˆ
θ ͷӨڹؔͱ, (Ϟʔϝϯτʹ੍͕͋Δ) √ n(ˆ θ − θ) = 1 √ n n i=1 φ(Zi, θ, η) + op(1) Λຬͨ͢ϕΫτϧؔ. ˆ θ ۙઢܗਪఆྔͱݺͼ n → ∞ ͰҰகੑ ͱۙਖ਼نੑ͕͋Δ √ n(ˆ θ − θ) → N 0, E[φ(Zi, θ, η)φ(Zi, θ, η)T ] Πϝʔδతʹ͋Δσʔλ͕ͲΕ͚ͩਪఆʹӨڹΛ༩͍͑ͯΔ͔Λ දݱͨ͠ͷ
ਪఆؔͱ M ਪఆ ਪఆํఔࣜ n i=1 u(Zi, θ) ਪఆؔ =
0 ͷղͱͯ͠ಘΒΕΔͷΛ M ਪఆྔ ͱݺͿ. Α͘ݟΔ score ؔͳΜ͔ίϨ. ͨͩ͠, E[φ(Zi, θ)] = 0 ظ 0 , E[∥φ(Zi, θ)∥2] < ∞ ࢄతͳͷൃࢄ͠ͳ͍ . ͋ͱ͏গ͚ͩ݅͋͠Δ. Ұகੑͱۙਖ਼نੑΛ࣋ͭ √ n(ˆ θ − θ) = 1 √ n n i=1 E[ ∂u(Zi, θ) ∂θ ] −1 u(Zi, θ) ͕͜͜Өڹؔʹͳ͍ͬͯΔ +op(1) → N 0, E[ ∂u(Zi, θ) ∂θ ] −1 E[u(Zi, θ)u(Zi, θ)T ] E[ ∂u(Zi, θ) ∂θ ] −T ] ͜ͷۙࢄͷਪఆྔΛαϯυΠονਪఆྔͱݺΜͩΓ͢Δ
RAL ਪఆྔ ۙઢܥਪఆྔͳΜ͔ྑͦ͞͏ʂͰ super efficiency ͷ (Hodges) ͕Δʂ Super efficiency:
ۙతʹ Cramer-Rao ͷԼݶΑΓྑ͍ͷ͕Ͱ͖ Δͷ͜ͱ ͜ͷΛղܾͨ͠ͷ͕ RAL (Regular asymptotic linear) ਪఆྔ. ͦͷਖ਼ଇ݅ۃݶ͕ LDGP (local data generating process) ʹґ ଘ͠ͳ͍͜ͱ (ৄ͘͠ Tsiatis, 2006) ηϛύϥਪ͜ͷ RAL ਪఆྔͷӨڹؔΛٻΊΔ͜ͱΛߟ͑Δ
Parametric submodel ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠ p(z; θ, η) ∈ Ssub
⊂ S Λຬͨ͢ύϥϝτϦοΫϞσϧ Ssub = {p(z; θ, γ)|θ ∈ Θ ⊂ Rr, γ ∈ Γ ⊂ Rs, s ∈ N} ΛύϥϝτϦοΫαϒϞσϧͱݺͿ.
Nuisance tangent space (ہ֎ۭؒ) ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠, ύϥϝτϦοΫαϒϞσϧ Ssub ͷہ֎ۭؒΛ
TN θ,γ (Ssub) = {BT sγ(z, θ, γ)|B ∈ Rs} ͱ͢Δ. γ p(z; θ, η) ʹରԠ͢ΔͷͰ sγ(z, θ, γ) = ∂ ∂γ log p(z; θ, γ) Ͱ ද͞ΕΔ nuisance score ؔ. ͜ͷઢܗۭؒ͜ͷ nuisance score vector ʹ ΑͬͯுΒΕ͍ͯΔ. ͜ͷͱ͖ TN θ,η (S) = Ssub TN θ,γ (Ssub) Λ S ্ͷ p(z; θ, η) ʹ͓͚Δہ֎ۭؒͱΑͿ. ͪͳΈʹ, ଆͷू ߹ʹؔͯ͠ closure ΛͱΔԋࢉࢠ. Note:͜ͷۭؒେͰޙʹ, RAL ਪఆྔͷӨڹؔ͜ͷۭؒʹަۭͨؒ͠ʹ ଐ͢Δ͜ͱ͕ॏཁʹͳͬͯ͘Δʂ
ઢܗ෦ۭؒͷࣹӨͷزԿͱϐλΰϥεͷఆཧ
RAL ਪఆྔͷӨڹؔͷॏཁͳఆཧ ηϛύϥϝτϦοΫ RAL ਪఆྔ β ͷӨڹؔ φ(Z) ҎԼͷ݅Λຬ ͢Δ.
Corollary1 E[φ(Z)sβ] = E[φ(Z)sT efficient (Z, β0, η0)] = I. ͨͩ͠, s είΞؔͰ, sT efficient ༗ޮείΞؔ Corollary2 φ(Z) ہ֎ۭؒʹަ͍ͯ͠Δ. ༗ޮӨڹ্ؔͷ 2 ͭͷ݅Λຬͨ͠, ͦͷࢄߦྻ, ޮݶքΛୡ ͦ͠Ε φeffi(Z, β0, η0) = E[seff (Z, β0, η0)sT eff (Z, β0, η0)] −1 seff (Z, β0, η0)
ηϛύϥۭؒͷఆཧ ύϥϝτϦοΫαϒϞσϧͷ߹ͷ RAL ਪఆྔͷӨڹؔͱۭؒͱͷؔ Tsiatis, 2006 ͷ Ch4.3 ͋ͨΓΛݟͯͶʂ ఆཧ
1 RAL ਪఆྔͷӨڹؔ {φ(Z) + TN θ,η (S)⊥} ͱ͍͏ۭؒʹؚ·ΕΔ. ͨͩ͠, φ(Z) ҙͷ RAL ਪఆྔͷӨڹؔͰ, TN θ,η (S)⊥ ηϛύϥϝτϦο Ϋۭؒͷަิۭؒ ఆཧ 2 ηϛύϥϝτϦοΫ༗ޮͳਪఆྔ, ͦͷӨڹ͕ؔҰҙʹ well-defined Ͱܾఆ͞ Ε,φefficient = φ(Z) − {φ(Z)|TN θ,η (S)⊥} ͷཁૉ. ͪͳΈʹ, (h|U) projection of h ∈ H(ੵΛಋೖͨ͠ώϧϕϧτۭؒ) onto the space U (ઢܗۭؒ)
GEE ʹ͍ͭͯͷ Remarks Liang-Zeger ͷ GEE ͷηϛύϥϝτϦοΫϞσϧ (੍ϞʔϝϯτϞσϧ: 1 ࣍ͱ
2 ࣍ͷϞʔϝϯτʹ੍͚ͩΛஔ͍ͨϞσϧ) ҎԼͷಛΛͭ. ہॴ (ۙ༗) ޮਪఆྔ: ࢄؔͷԾఆ͕ਖ਼͚͠Ε, ༗ޮਪఆྔ Robustness: ແݶ࣍ݩͷύϥϝʔλਪఆ͕ඞཁ͕ͩ, ࢄؔΛ misspecify ͨ͠ͱͯ͠Ұகੑͱۙਖ਼نੑอ࣋ GEE ͷຊΛಡΊΘ͔Δ͚Ͳ, Working covariance matrix Λؒҧ͑ͯ ༗ޮੑࣦΘΕΔ͕, ͦͷଞͷ·͍͠ੑ࣭ (ۙਖ਼نੑͱҰகੑ) อ࣋Ͱ͖Δͬͯ͜ͱ