Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMをやめよう / stop using LLM
Search
Naoki Kishida
July 05, 2023
Programming
11
13k
LLMをやめよう / stop using LLM
2023年7月5日に開催されたLLM Meetup Tokyo #3でのLT資料です
https://lu.ma/llm-meetup-tokyo-3
Naoki Kishida
July 05, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
ローカルLLM基礎知識 / local LLM basics 2025
kishida
29
15k
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
5
1k
AIの弱点、やっぱりプログラミングは人間が(も)勉強しよう / YAPC AI and Programming
kishida
13
6.3k
海外登壇の心構え - コワクナイヨ - / how to prepare for a presentation abroad
kishida
2
130
Current States of Java Web Frameworks at JCConf 2025
kishida
0
1.7k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
26
7.2k
LLMベースAIの基本 / basics of LLM based AI
kishida
13
3.6k
Java 24まとめ / Java 24 summary
kishida
3
830
AI時代のプログラミング教育 / programming education in ai era
kishida
25
27k
Other Decks in Programming
See All in Programming
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
200
CSC307 Lecture 06
javiergs
PRO
0
690
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
770
Grafana:建立系統全知視角的捷徑
blueswen
0
330
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
140
CSC307 Lecture 01
javiergs
PRO
0
690
MUSUBIXとは
nahisaho
0
140
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
Package Management Learnings from Homebrew
mikemcquaid
0
230
AgentCoreとHuman in the Loop
har1101
5
240
Featured
See All Featured
Docker and Python
trallard
47
3.7k
ラッコキーワード サービス紹介資料
rakko
1
2.3M
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
71
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
The Curse of the Amulet
leimatthew05
1
8.7k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
GraphQLとの向き合い方2022年版
quramy
50
14k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
740
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Transcript
2023/07/05 1 LLMをやめよう 2023/7/5 LLM Meetup Tokyo #3 LINE Fukuoka
きしだ なおき 酒のネタになりそうなブログまとめ
2023/07/05 2 自己紹介 • きしだ なおき (@kis) • LINE Fukuoka
• 「プロになるJava」デテマス
2023/07/05 3 ChatGPTには感情があるかも? • そんな仕組みになってない? • 人間の役に立つよう強く躾られている • 難しいタスクが達成できると言葉が多くなる •
人間が非協力的でタスクが達成できないと 言葉が少なくなる • 塩対応 • 知らないことを聞かれると、知ってることで 言葉を埋める • これらが「感情」をもつように見える • 「感情」の定義次第といえるところまではきている
2023/07/05 4 大規模言語モデルは庶民的になる • コンピュータリソースや学習データなどから大規模かが難しい • GPT4で要求がだいたい満たせるので、そこまで需要がない? • 庶民的になる •
手元で動かしやすくなる • カスタマイズして手元の要求を満たす • もし大規模化しても、推論能力が あがるのではなく、人情がわかるようになる • 「解決方法じゃなく共感が欲しいんや」に 対応可能に
シンギュラリティは来ない • シンギュラリティ • =人工知能が自己発展することで技術発展が指数関数的に加速する • ロジカルに実現していることが前提 • 「AI」の学習に半年くらいかかるので加速しない •
データセンター拡張など ハードウェアの構築が必要 • なんだかんだ80億人いる人類にかなわない • 電話やインターネットのほうが 加速したのでは
LLMの「脳波」を観察してみる • GPT2モデルの全結合層の出力を保存 • CelebrasGPTを使用 • 英語の対応と日本語の対応で反応が強い部分が違う
LLMを壊してみよう • 「脳波」がとれたらそこを壊したくなるよね • 日本語対応で反応した部分をゼロリセットすると日本語がしゃべ れなくなる • 英語はしゃべれる • 英語対応で反応した部分をリセットしても
英語しゃべれる • 英語は学習量が多いので壊れにくい?
Function Callingでツールの操作 • Function Callingが出たのでツールの操作に使ってみる • 結構いい感じに操作できた
GPTで英語の勉強を手伝ってもらう • 日本語を渡して、レベルに応じた英文と難しい単語、理解度 チェック問題をつくってもらう • Function Callingが返すJSONがパースできない問題 • GPTに投げ直すのはコストが高い •
自力でパースして解決
LLMを使わずに自然言語でツールを操作 • ちょっとしたツール操作でGPT使うのはおおげさ • 格フレーム文法で雑に解決 • LLM使わずにすむならロジカルにやろう • チャットでも応答生成はロジカルに やったほうがよさげ
まとめ • LLMじゃなくても自然言語処理は楽しい