Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ICSA 2017

ICSA 2017

Reproducible RNA-seq analysis with recount2

Leonardo Collado-Torres

June 27, 2017
Tweet

More Decks by Leonardo Collado-Torres

Other Decks in Science

Transcript

  1. SRA

  2. Obstacle: our research moves (spot) markets Spike in market price

    due to preprocessing job flows slide adapted from Jeff Leek
  3. 5 10 15 0 1 2 3 4 5 Genome

    Coverage 3 3 5 4 4 2 2 3 1 3 3 1 4 4 2 1 AUC = area under coverage = 45
  4. > library('recount') > download_study( 'ERP001942', type='rse-gene') > load(file.path('ERP001942 ', 'rse_gene.Rdata'))

    > rse <- scale_counts(rse_gene) https://github.com/leekgroup/recount-analyses/
  5. >library('recount') > download_study('SRP029880', type='rse-gene') > download_study('SRP059039', type='rse-gene') > load(file.path('SRP029880 ',

    'rse_gene.Rdata')) > load(file.path('SRP059039', 'rse_gene.Rdata')) > mdat <- do.call(cbind, dat) https://github.com/leekgroup/recount-analyses/
  6. jx 1 jx 2 jx 3 jx 4 jx 5

    jx 6 Coverage Reads Gene Isoform 1 Isoform 2 Potential isoform 3 exon 1 exon 2 exon 3 exon 4 Expressed region 1: potential exon 5
  7. Fetal Infant Child Teen Adult 50+ 6 / group, N

    = 36 Discovery data Jaffe et al, Nat. Neuroscience, 2015 Postmortem Human Brain Samples Fetal Infant Child Teen Adult 50+ 6 / group, N = 36 Replication data
  8. CBC: 28 MD: 24 STR: 28 AMY: 31 HIP: 32

    DFC: 34 Total N samples: 487 BrainSpan data Coverage Data from BrainSpan: http://download.alleninstitute.org/brainspan/MRF_BigWig_Gencode_v10/ VFC: 30 MFC: 32 OFC: 30 M1C: 25 S1C: 26 IPC: 33 A1C: 30 STC: 35 ITC: 33 V1C: 33
  9. > library('recount') > regions_list <- bplapply(chrs, function(chr) { regs <-

    expressed_regions('SRP012682', chr, cutoff = 5L) return(regs) }, BPPARAM = bp) > names(regions_list) <- chrs > regions <- unlist(GRangesList(regions_list)) https://github.com/leekgroup/recount-analyses/
  10. > library('recount') > covMat <- bplapply(chrs, function(chr) { coverageMatrix <-

    coverage_matrix('SRP012682’', chr, regions_list[[chr]]) return(coverageMatrix) }, BPPARAM = bp) > covMat <- do.call(rbind, covMat) https://github.com/leekgroup/recount-analyses/
  11. expression data for ~70,000 human samples GTEx N=9,962 TCGA N=11,284

    SRA N=49,848 samples expression estimates gene exon junctions ERs slide adapted from Shannon Ellis
  12. expression data for ~70,000 human samples Answer meaningful questions about

    human biology and expression GTEx N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs slide adapted from Shannon Ellis
  13. expression data for ~70,000 human samples samples phenotypes ? GTEx

    N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs Answer meaningful questions about human biology and expression slide adapted from Shannon Ellis
  14. Category Frequency F 95 female 2036 Female 51 M 77

    male 1240 Male 141 Total 3640 Even when information is provided, it’s not always clear… sra_meta$Se x “1 Male, 2 Female”, “2 Male, 1 Female”, “3 Female”, “DK”, “male and female” “Male (note: ….)”, “missing”, “mixed”, “mixture”, “N/A”, “Not available”, “not applicable”, “not collected”, “not determined”, “pooled male and female”, “U”, “unknown”, “Unknown” slide adapted from Shannon Ellis
  15. SRA phenotype information is far from complete SubjectID Sex Tissue

    Race Age 6620 NA female liver NA NA 6621 NA female liver NA NA 6622 NA female liver NA NA 6623 NA female liver NA NA 6624 NA female liver NA NA 6625 NA male liver NA NA 6626 NA male liver NA NA 6627 NA male liver NA NA 6628 NA male liver NA NA 6629 NA male liver NA NA 6630 NA male liver NA NA 6631 NA NA blood NA NA 6632 NA NA blood NA NA 6633 NA NA blood NA NA 6634 NA NA blood NA NA 6635 NA NA blood NA NA 6636 NA NA blood NA NA z z z z slide adapted from Shannon Ellis
  16. Goal : to accurately predict critical phenotype information for all

    samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 TCGA The Cancer Genome Atlas N=11,284 GTEx Genotype Tissue Expression Project N=9,662 slide adapted from Shannon Ellis
  17. Goal : to accurately predict critical phenotype information for all

    samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set test accuracy of predictor test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis
  18. Goal : to accurately predict critical phenotype information for all

    samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set test accuracy of predictor predict phenotypes across samples in TCGA test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis
  19. Goal : to accurately predict critical phenotype information for all

    samples in recount gene, exon, exon-exon junction and expressed region RNA-Seq data SRA Sequence Read Archive N=49,848 GTEx Genotype Tissue Expression Project N=9,662 divide samples build and optimize phenotype predictor training set predict phenotypes across SRA samples test accuracy of predictor predict phenotypes across samples in TCGA test set TCGA The Cancer Genome Atlas N=11,284 slide adapted from Shannon Ellis
  20. Sex prediction is accurate across data sets Number of Regions

    20 20 20 20 Number of Samples (N) 4,769 4,769 11,245 3,640 99.8% 99.6% 99.4% 88.5% slide adapted from Shannon Ellis
  21. Sex prediction is accurate across data sets Number of Regions

    20 20 20 20 Number of Samples (N) 4,769 4,769 11,245 3,640 99.8% 99.6% 99.4% 88.5% slide adapted from Shannon Ellis
  22. Number of Regions 589 589 589 589 Number of Samples

    (N) 4,769 4,769 7,193 8,951 97.3% 96.5% 71.9% 50.6% Tissue prediction is accurate across data sets slide adapted from Shannon Ellis
  23. Number of Regions 589 589 589 589 589 Number of

    Samples (N) 4,769 4,769 613 6,579 8,951 97.3% 96.5% 91.0% 70.2% Prediction is more accurate in healthy tissue 50.6% slide adapted from Shannon Ellis
  24. > library('recount') > download_study( 'ERP001942', type='rse-gene') > load(file.path('ERP001942 ', 'rse_gene.Rdata'))

    > rse <- scale_counts(rse_gene) > rse_with_pred <- add_predictions(rse_gene) https://github.com/leekgroup/recount-analyses/
  25. expression data for ~70,000 human samples samples phenotypes ? GTEx

    N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs Answer meaningful questions about human biology and expression sex tissue M Blood F Heart F Liver slide adapted from Shannon Ellis
  26. Collaborators The Leek Group Jeff Leek Shannon Ellis Hopkins Ben

    Langmead Chris Wilks Kai Kammers Kasper Hansen Margaret Taub OHSU Abhinav Nellore LIBD Andrew Jaffe Emily Burke Stephen Semick Carrie Wright Amanda Price Nina Rajpurohit Funding NIH R01 GM105705 NIH 1R21MH109956 CONACyT 351535 AWS in Education Seven Bridges IDIES SciServer