Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mapping2015
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Leonardo Collado-Torres
February 23, 2015
Science
1
410
mapping2015
Leonardo Collado-Torres
February 23, 2015
Tweet
Share
More Decks by Leonardo Collado-Torres
See All by Leonardo Collado-Torres
data-viz-talk-cz-2025
lcolladotor
0
180
SpatialBiologyWestCoastUS2024
lcolladotor
0
240
WCS-LA-2024
lcolladotor
0
450
FOGBoston2024
lcolladotor
0
250
PROINNOVA2023
lcolladotor
0
230
2023-10-03-FOGBoston
lcolladotor
0
1.2k
LCG20
lcolladotor
0
870
2023-08-02_spatialLIBD_BioC2023_demo
lcolladotor
0
390
2023-07-18_Verge_Genomics
lcolladotor
0
360
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
1.5k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
データマイニング - コミュニティ発見
trycycle
PRO
0
210
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
高校生就活へのDA導入の提案
shunyanoda
1
6.2k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
検索と推論タスクに関する論文の紹介
ynakano
1
150
Navigating Weather and Climate Data
rabernat
0
110
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
290
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Code Review Best Practice
trishagee
74
20k
Between Models and Reality
mayunak
1
190
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Writing Fast Ruby
sferik
630
62k
Become a Pro
speakerdeck
PRO
31
5.8k
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Testing 201, or: Great Expectations
jmmastey
46
8k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
Transcript
Does mapping simulated RNA-seq reads provide information? Leonardo Collado-Torres tweet:
@fellgernon blog: tinyurl.com/FellBit
Previously • Choose 10 genes with FPKM > 20 •
cufflinks: estimate isoform FPKM from 7 Geuvadis samples • polyester: simulate with uniform & rnaf models • Map with TopHat • View coverage https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
Goals • Reproduce • Similar behavior in other genes/samples? •
Do simulated reads predict observed data? Get a measure by gene • Even more than by chance?
None
Original
Reproduced
None
None
None
None
Measures by gene: using single bp exon • Correlation (R^2)
• RMSD: scaling by max first • ARIMA: forecast models – Auto ARIMA on obs – Fit again using simulated data as predictor – P-value for predictor and estimated coef • Chance: – Neg. binomial size 1 and 6 – Compare replicates of simulated data
• d: default params, 2 reps (2x) • r: using
rnaf bias, 2x • b1: neg. binomial with size = 1, 2x • b6: neg. binom. size = 6, 2x • d1-d2: using d1 as “obs” – Same for r1-r2, b1a-b1b, b6a-b6b
Correlation
Correlation: summarize by sample
Correlation: summarize by gene
R^2
Scaling by max then RMSD
Scaling by max then RMSD
None
None
ARIMA: predictor p-value
ARIMA: predictor p-value
ARIMA: predictor coefficient
None
None
Code • https://github.com/alyssafrazee/polyest er_code/blob/master/polyester_manuscri pt.Rmd • https://github.com/lcolladotor/mapBias (private for now)
None
None