Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mapping2015
Search
Leonardo Collado-Torres
February 23, 2015
Science
1
400
mapping2015
Leonardo Collado-Torres
February 23, 2015
Tweet
Share
More Decks by Leonardo Collado-Torres
See All by Leonardo Collado-Torres
data-viz-talk-cz-2025
lcolladotor
0
110
SpatialBiologyWestCoastUS2024
lcolladotor
0
210
WCS-LA-2024
lcolladotor
0
370
FOGBoston2024
lcolladotor
0
230
PROINNOVA2023
lcolladotor
0
220
2023-10-03-FOGBoston
lcolladotor
0
1.1k
LCG20
lcolladotor
0
810
2023-08-02_spatialLIBD_BioC2023_demo
lcolladotor
0
360
2023-07-18_Verge_Genomics
lcolladotor
0
340
Other Decks in Science
See All in Science
Cloudflare Images + Workers KVでお手軽&低コスト画像最適化をしたかった
nenrinyear
0
110
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
120
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
310
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
200
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
430
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
220
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
130
Machine Learning for Materials (Challenge)
aronwalsh
0
360
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
110
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
150
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Designing for humans not robots
tammielis
254
26k
4 Signs Your Business is Dying
shpigford
186
22k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Visualization
eitanlees
150
16k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
660
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Facilitating Awesome Meetings
lara
57
6.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
320
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Transcript
Does mapping simulated RNA-seq reads provide information? Leonardo Collado-Torres tweet:
@fellgernon blog: tinyurl.com/FellBit
Previously • Choose 10 genes with FPKM > 20 •
cufflinks: estimate isoform FPKM from 7 Geuvadis samples • polyester: simulate with uniform & rnaf models • Map with TopHat • View coverage https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
Goals • Reproduce • Similar behavior in other genes/samples? •
Do simulated reads predict observed data? Get a measure by gene • Even more than by chance?
None
Original
Reproduced
None
None
None
None
Measures by gene: using single bp exon • Correlation (R^2)
• RMSD: scaling by max first • ARIMA: forecast models – Auto ARIMA on obs – Fit again using simulated data as predictor – P-value for predictor and estimated coef • Chance: – Neg. binomial size 1 and 6 – Compare replicates of simulated data
• d: default params, 2 reps (2x) • r: using
rnaf bias, 2x • b1: neg. binomial with size = 1, 2x • b6: neg. binom. size = 6, 2x • d1-d2: using d1 as “obs” – Same for r1-r2, b1a-b1b, b6a-b6b
Correlation
Correlation: summarize by sample
Correlation: summarize by gene
R^2
Scaling by max then RMSD
Scaling by max then RMSD
None
None
ARIMA: predictor p-value
ARIMA: predictor p-value
ARIMA: predictor coefficient
None
None
Code • https://github.com/alyssafrazee/polyest er_code/blob/master/polyester_manuscri pt.Rmd • https://github.com/lcolladotor/mapBias (private for now)
None
None