Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Geoindexing with MongoDB
Search
Leszek Krupiński
May 17, 2012
Programming
0
59
Geoindexing with MongoDB
Leszek Krupiński
May 17, 2012
Tweet
Share
More Decks by Leszek Krupiński
See All by Leszek Krupiński
So that the daemon won’t die
leafnode
2
400
Practical PHP7
leafnode
2
480
Dobrze posól swoje hasło
leafnode
0
120
Dobrze posól swoje hasło (z notatkami)
leafnode
0
110
PHPNG kontra HHVM
leafnode
0
110
PHPNG kontra HHVM (z notatkami)
leafnode
0
80
Ewolucja PHP: PHP 5.6, NG, PHP 7, HHVM
leafnode
2
300
Sculpin - Generowanie statycznych stron w PHP
leafnode
2
72
Skalowanie aplikacji PHP
leafnode
1
430
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
470
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
980
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
600
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
380
CSC307 Lecture 04
javiergs
PRO
0
660
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
140
Oxlint JS plugins
kazupon
1
980
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.4k
CSC307 Lecture 03
javiergs
PRO
1
490
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
ラッコキーワード サービス紹介資料
rakko
1
2.3M
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Designing Experiences People Love
moore
144
24k
Transcript
Geoindexing with MongoDB Leszek Krupiński WebClusters 2012
About me
On-line since 1997
Funny times
1 hr of internet for 1 USD
None
None
First social site: geocities
My first web page
What do I do now
Day-time job Managing team of developers for Polish Air Force
Side: consulting, optimizing, desiging
Buzzwords incoming!
The Internet 2008
Web 2.0
http://en.wikipedia.org/wiki/File:Web_2.0_Map.svg CC-BY-SA-2.5
Be social in your bedroom
alone.
The Internet 2012
Web 3.0
None
Why geospatial?
Needs shifted
Why? Because they could.
None
None
None
How to implement?
Database. Duh.
Keep, but also query
Is there a person at 53.438522,14.52198? Nope. Is there a
person at 53.438522,14.52199? Nope. Is there a person at 53.438522,14.52199? Yeah, here’s Johnny!
Not too useful.
Give me nearby homies. Within the range of 1 km
there is: • Al Gore (53.438625,14.52103) • Bill Clinton (53.432531,14.55127) • Johnny Bravo (53.438286,14.52363)
Now that’s better.
Geoindexing. Nothing new.
Oracle, PostreSQL, Lucene/Solr, even MySQL (via extensions)
SELECT c.holding_company, c.location FROM competitor c, bank b WHERE b.site_id
= 1604 AND SDO_WITHIN_DISTANCE(c.location, b.location, ’distance=2 unit=mile’) = ’TRUE’ ORACLE
SQL is so last year
Let’s use something cool
MongoDB. Because all the cool kids use NoSQL now
None
Why MongoDB?
Choose your NoSQL wise.
NoSQL in MongoDB • Document –based • Queries (JS-like syntax)
• JSON-like storage
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
Back to geo.
{ loc: [ 52.0, 21.0 ], name: ”Warsaw”, type: ”City”
}
db.nodes.ensureIndex({loc: '2d'})
That’s it.
Query • Exact o db.places.find( { loc : [50,50] }
) • Near o db.places.find( { loc : { $near : [50,50] } } ) • Limit o db.places.find( { loc : { $near : [50,50] } } ).limit(20) • Distance o db.places.find( { loc : { $near : [50,50] , $maxDistance : 5 } } ).limit(20)
Compound index • db.places.ensureIndex( { location : "2d" , category
: 1 } ); • db.places.find( { location : { $near : [50,50] }, category : 'coffee‚ } );
Bound queries • box = [ [40.73083, -73.99756], [40.741404, -73.988135]
] • db.places.find( {"loc" : {"$within" : {"$box" : box }} } )
Problems
Units
Coordinates in arc units Distance in kilometers
In query
earthRadius = 6378 // km multi = earthRadius * PI
/ 180.0 range = 3000 // km … maxDistance : range * multi…
In results
pointDistance = distances[0].dis / multi
Earth is not flat.
Problem: can’t use linear distance
Earth isn’t flat too.
Solution? Use approximation.
MongoDB has it built-in distances = db.runCommand( { geoNear :
"points", near : [0, 0], spherical : true, maxDistance : range / earthRadius /* to radians */ } ).results
Focus: runCommand distances = db.runCommand({ geoNear : "points" …
Sort by distance Only with runCommand
Automatically sorted • db.runCommand( { geoNear : "places" , near
: [50,50], num : 10 } ); • { "ns" : "test.places", "results" : [ { "dis" : 69.29646421910687, "obj" : … }, { "dis" : 69.29646421910687, "obj" : … }, … ], … }
Demo
OpenStreetMaps database of Poland imported into MongoDB
14.411.552 nodes
3GB of raw XML data
PHP in virtual machine
Imported about 100.000 nodes every 10s.
Pretty cool, eh?
Kudos to Derick Rethans Part of this talk was inspired
by his talk
Questions?
Thanks! Rate me at https://joind.in/talk/view/6475
Geoindexing with MongoDB supplement Leszek Krupiński WebClusters 2012
Why MongoDB?
Evaluate.
PostGIS is cool too. (but it’s SQL, meh)
Why MongoDB? Use Cases • Archiving • Event logging •
Document and CMS • Gaming • High volume sites • Mobile • Operational datastore • Agile development • Real-time stats Features • Ad hoc queries • Indexing • Replication • Load Balancing • File Storage • Aggregation • Server-side JavaScript • Capped collections http://en.wikipedia.org/wiki/Mongodb
If you need other features of MongoDB, use it
If you don’t, evaluate.
Evaluate.
Demo (hopefully)
Questions?
Please leave feedback! Rate me at https://joind.in/6475