Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Monty Hall Problem with Haskell
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Mathias Verraes
May 04, 2016
Technology
0
2.8k
The Monty Hall Problem with Haskell
5min lightning talk for the SoCraTes Belgium meetup.
Mathias Verraes
May 04, 2016
Tweet
Share
More Decks by Mathias Verraes
See All by Mathias Verraes
On Being Explicit
mathiasverraes
0
3.1k
How to Find the Bar
mathiasverraes
1
2.1k
Designed Stickiness
mathiasverraes
1
2.3k
The World's Shortest and Most Chaotic Introduction to Event Storming
mathiasverraes
2
2.8k
Property Based Testing
mathiasverraes
1
2.8k
Towards Modelling Processes
mathiasverraes
3
5.9k
Modelling Heuristics
mathiasverraes
1
3.1k
Object Reorientation
mathiasverraes
6
2.9k
Small Controlled Experiments
mathiasverraes
1
4.2k
Other Decks in Technology
See All in Technology
旅先で iPad + Neovim で iOS 開発・執筆した話
zozotech
PRO
0
100
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
130
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
150
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
生成AIと余白 〜開発スピードが向上した今、何に向き合う?〜
kakehashi
PRO
0
170
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
250
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
190
Tebiki Engineering Team Deck
tebiki
0
24k
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
Featured
See All Featured
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
110
The Spectacular Lies of Maps
axbom
PRO
1
530
Automating Front-end Workflow
addyosmani
1371
200k
Being A Developer After 40
akosma
91
590k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
180
The Art of Programming - Codeland 2020
erikaheidi
57
14k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
750
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
57
4 Signs Your Business is Dying
shpigford
187
22k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Transcript
The Monty Hall Problem @mathiasverraes
None
None
None
None
None
Don't use thinking when you can use programming — Alan
Turing1 1 Supposedly
data Door = Goat | Car deriving (Eq, Show) type
Game = [Door]
newGame :: MonadRandom m => m Game newGame = shuffleM
[Car, Goat, Goat] newGames :: MonadRandom m => m [Game] newGames = replicateM 100 newGame
(|>) = flip ($) play :: Strategy -> Game ->
Door play strategy game = game |> pickDoor |> revealGoat |> strategy
pickDoor :: Game -> Game pickDoor = id -- Assume
we always pick -- the first door, it -- doesn't matter anyway.
revealGoat :: Game -> Game revealGoat [choice, Goat, x] =
[choice, x] revealGoat [choice, x, Goat] = [choice, x]
type Strategy = Game -> Door stay :: Strategy stay
[firstChoice, alternative] = firstChoice switch :: Strategy switch [firstChoice, alternative] = alternative
do game <- newGame return $ play stay game) --
Goat do game <- newGame return $ play switch game -- Car
playAll :: Strategy -> [Game] -> Int playAll strategy games
= map (play strategy) games |> filter (==Car) |> length
do gs <- newGames return $ playAll stay gs --
32 do gs <- newGames return $ playAll switch gs -- 68
None
module MontyHall where newGame :: MonadRandom m => m Game
newGame = shuffleM [Car, Goat, Goat] import System.Random.Shuffle newGames :: MonadRandom m => m [Game] import Control.Monad.Random.Class newGames = replicateM 100 newGame import Control.Monad pickDoor :: Game -> Game (|>) = flip ($) pickDoor = id data Door = Goat | Car deriving (Eq, Show) revealGoat :: Game -> Game type Game = [Door] revealGoat [choice, Goat, x] = [choice, x] type Strategy = Game -> Door revealGoat [choice, x, Goat] = [choice, x] play :: Strategy -> Game -> Door stay, switch :: Strategy play strategy game = stay [firstChoice, alternative] = firstChoice game switch [firstChoice, alternative] = alternative |> pickDoor |> revealGoat main :: IO() |> strategy main = do (stayCnt, switchCnt) <- do playAll :: Strategy -> [Game] -> Int gs <- newGames playAll strategy games = return (playAll stay gs, playAll switch gs) map (play strategy) games print ("Stay: " ++ show stayCnt) |> filter (==Car) print ("Switch: " ++ show switchCnt) |> length
Full source code: https://gist.github.com/mathiasverraes/ 3a31c912c6efb496566d55ee077dad6f Diagram: Curiouser http://www.curiouser.co.uk/monty/montyhall2.htm Images: AsapScience
http://youtube.com/watch?v=9vRUxbzJZ9Y Inspiration: F# Monty Hall problem by Yan Cui http://theburningmonk.com/2015/09/f-monty-hall-problem/
Thanks :-) @mathiasverraes