Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning and Sentiment Classification i...
Search
Matt D.
May 30, 2011
Programming
1
990
Machine Learning and Sentiment Classification in Ruby
Matt D.
May 30, 2011
Tweet
Share
Other Decks in Programming
See All in Programming
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
550
XP, Testing and ninja testing ZOZ5
m_seki
3
630
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
4.9k
CSC305 Lecture 03
javiergs
PRO
0
240
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
1k
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3.6k
Devvox Belgium - Agentic AI Patterns
kdubois
1
120
Range on Rails ―「多重範囲型」という新たな選択肢が、複雑ロジックを劇的にシンプルにしたワケ
rizap_tech
0
120
「ちょっと古いから」って避けてた技術書、今だからこそ読もう
mottyzzz
10
6.7k
ALL CODE BASE ARE BELONG TO STUDY
uzulla
17
2.7k
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
3.3k
CI_CD「健康診断」のススメ。現場でのボトルネック特定から、健康診断を通じた組織的な改善手法
teamlab
PRO
0
210
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
How to Think Like a Performance Engineer
csswizardry
27
2k
Statistics for Hackers
jakevdp
799
220k
Documentation Writing (for coders)
carmenintech
75
5.1k
We Have a Design System, Now What?
morganepeng
53
7.8k
Building an army of robots
kneath
306
46k
Designing for humans not robots
tammielis
254
26k
Done Done
chrislema
185
16k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Gamification - CAS2011
davidbonilla
81
5.5k
Transcript
.BDIJOF -FBSOJOH BOE 4FOUJNFOU $MBTTJGJDBUJPO JO 3VCZ by Matt Drozdzynski
@matid
None
.BDIJOF -FBSOJOH … or how to teach your computer to
do back flips for you.
4FOUJNFOU $MBTTJGJDBUJPO … or how to quantify people’s opinions.
#euruko is definitely the most amazing Ruby conference ever!
I’ve been to many dreadful conferences, but #euruko is certainly
not one of them.
Ruby is a true delight compared to how horrendous Java
can be.
d JO 3VCZ
None
None
%BUB (BUIFSJOH
None
None
-BOHVBHF "DDVSBDZ 0% 25% 50% 75% 100% 2007 English Spanish
German Italian Polish
"OOPUBUJPOT … or I have the tweets—now what?
%BUB $MFBOJOH … or how to separate wheat from the
chaff.
'FBUVSF 3FEVDUJPO … or Matt’s crash course in selective ignorance.
$MBTTJGJDBUJPO … and the ‘not so rocket’ science behind it
all.
/BJWF #BZFT Simple and robust Assumes independence of features Scalable!
require "ankusa" require "ankusa/memory_storage" storage = Ankusa::MemoryStorage.new classifier = Ankusa::NaiveBayesClassifier.new(storage)
training.each do |tweet| classifier.train tweet.sentiment, tweet.to_s end sentiment = classifier.classify tweet.to_s
.BYJNVN &OUSPQZ No independence assumptions Suffers from overfitting Substantially slower
than Naive Bayes
require "maxent_string_classifier" classifier = MaxentStringClassifier::Loader.train(Classifier.root + "max_ent" + "data") classification
= classifier.classify tweet.to_s
4VQQPSU 7FDUPS .BDIJOFT Non-probabilistic binary linear classifier Only directly applicable
to two-class problems “Works by constructing a set of hyperplanes in a high or infinite dimensional space”—what?
None
require "eluka" classifier = Eluka::Model.new training.each do |tweet| classifier.add(tweet.features, tweet.sentiment)
end classifier.build sentiment = classifier.classify tweet.features
$PODMVTJPOT … or is the whole thing worth the hassle?
2VFTUJPOT
@matid spkr8.com/t/7678 bit.ly/matid-dissertation bit.ly/matid-dissertation-pdf 5IBOLT