Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: Sample Reuse via Importance Sampling in I...
Search
Masahiro Nomura
April 09, 2020
Research
0
290
論文紹介: Sample Reuse via Importance Sampling in Information Geometric Optimization / sample_reuse_igo
Masahiro Nomura
April 09, 2020
Tweet
Share
More Decks by Masahiro Nomura
See All by Masahiro Nomura
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolving-propensity-contradiction-in-offline-recommender-learning
nmasahiro
0
300
転移学習によるハイパーパラメータ最適化の高速化 / warm_starting_cma
nmasahiro
0
2.3k
論文紹介: IRのためのパラメータチューニング / ir-tuning
nmasahiro
0
520
機械学習における ハイパーパラメータ最適化の理論と実践 / hpo_theory_practice
nmasahiro
30
42k
論文紹介 : Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
nmasahiro
1
760
広告とAI(とハイパーパラメータ最適化) / Ad with AI
nmasahiro
1
2.1k
Other Decks in Research
See All in Research
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
2025-11-21-DA-10th-satellite
yegusa
0
110
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
450
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
390
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
CoRL2025速報
rpc
4
4.2k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
Featured
See All Featured
The browser strikes back
jonoalderson
0
420
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Six Lessons from altMBA
skipperchong
29
4.2k
First, design no harm
axbom
PRO
2
1.1k
Test your architecture with Archunit
thirion
1
2.2k
Navigating Team Friction
lara
192
16k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
65
Become a Pro
speakerdeck
PRO
31
5.8k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Bash Introduction
62gerente
615
210k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
. Sample Reuse via Importance Sampling in Information Geometric Optimization
^ILW1NL Y 18 : I ) ) * ( WP LW WPK ^ 1
• . S RL ?L XL [P 8S UWY L
S RP N P 8 MUWS YPU 7LUSLYWP = YPSP YPU • . OP P OP OPW DU OLP 1 PSUYU P = OP U U =O W • . WCP[ ) (- 75 = (+ L]YL K • . w 87= ʼ • . 28: 1 5 h • . 1 5 z~ 2
• 87= • 87= • • 3
87= • i i i • . s p f
s • w ~n • 1 5 5 . ]ac nʼ s • 28: 71 . ]ac nʼ • w z~ 1 5 ? e A K YL 4
87= • 87= (. • M I M 5
87= • zrzf5EM ] F sm • y • z~
s n • z~ 5EB ] F 6
87= • zrzf5EM ] F sm • y • z~
s n • z~ 5EB ] F 7
87= • zrzf5EM ] F sm • y • z~
s n • z~ 5EB ] F 8
87= • zrzf5EM ] F sm • y • z~
s n • z~ 5EB ] F 9
87= • now f5EB ] F w ʼ • ~
• 87= ). • N I S • . • : KP[s • i rv w 10
87= • • d ]ac r • • 5EB ]
F zfc 11
87= • • d ]ac r • • 5EB ]
F zfc • d ~ sm 12
87= • 87= d n~n • PYLW YPU x ~~z
~ f t~n n • ~ ~ 13
8S UWY L S RP N • ( G /
( f r s • zʼn . ] b G N ] ∫ " # %& # '# • i . G r d • n 8 . • A IP XLKr|f G zʼ s n 14
• 28: . ]ac nʼ87= • • 1 5 .
]ac nʼ87= • z n z k 15
. 28: 16 • = L ] . ( ʼ
s ~(s • :L KP N= LX . r (s zʼ s ~(s
. 1 5 17 • 5RRP XUPK ?UXL IWU .
• 1 RL^ ? XYWPNP . • ? XYWPNP s1 RL^ s n
. 1 5 18
• 87= ʼ i i • 28: 1 5 •
8S UWY L S RP N • 28: 1 5 z~ • ? XYWPNP zr ʼsf • • 19