Slide 1

Slide 1 text

SYMNET Matei Popovici, Costin Raiciu, Radu Stoenescu a static tool for network verification

Slide 2

Slide 2 text

Network function virtualization

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

Hard to reason about

Slide 6

Slide 6 text

Hard to maintain Hard to reason about

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

Hardware

Slide 10

Slide 10 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software

Slide 11

Slide 11 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software Click

Slide 12

Slide 12 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software Click

Slide 13

Slide 13 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software Click ClickOS

Slide 14

Slide 14 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software Click ClickOS

Slide 15

Slide 15 text

Hardware // Change the following line to refer to your interface's IP and Ethernet // addresses. AddressInfo(the_interface 1.0.0.1 0:0:c0:8a:67:ef); classifier :: Classifier(12/0800 /* IP packets */, 12/0806 20/0001 /* ARP requests */, - /* everything else */); ip_classifier :: IPClassifier(dst udp port 1234 /* relevant UDP packets */, - /* everything else Software Click ClickOS

Slide 16

Slide 16 text

Examples

Slide 17

Slide 17 text

Examples

Slide 18

Slide 18 text

Examples

Slide 19

Slide 19 text

Examples

Slide 20

Slide 20 text

Examples

Slide 21

Slide 21 text

Virtualization vs. configuration 12/0806 20/0001

Slide 22

Slide 22 text

Virtualization vs. configuration access-list extended permit tcp host 192.168.1.1 any 12/0806 20/0001

Slide 23

Slide 23 text

Virtualization vs. configuration access-list extended permit tcp host 192.168.1.1 any 12/0806 20/0001

Slide 24

Slide 24 text

Virtualization vs. configuration access-list extended permit tcp host 192.168.1.1 any in -> IPClassifier(„dst host 192.168.1.1 and tcp”) -> out 12/0806 20/0001

Slide 25

Slide 25 text

Virtualization vs. configuration access-list extended permit tcp host 192.168.1.1 any in -> IPClassifier(„dst host 192.168.1.1 and tcp”) -> out 12/0806 20/0001 in -> IPClassifier(„12/0806 20/0001”) -> out

Slide 26

Slide 26 text

Virtualization vs. configuration access-list extended permit tcp host 192.168.1.1 any in -> IPClassifier(„dst host 192.168.1.1 and tcp”) -> out 12/0806 20/0001 in -> IPClassifier(„12/0806 20/0001”) -> out ARP req

Slide 27

Slide 27 text

Challenges

Slide 28

Slide 28 text

Challenges • Debugging

Slide 29

Slide 29 text

Challenges • Debugging • Understanding the „software” topology

Slide 30

Slide 30 text

Challenges • Debugging • Understanding the „software” topology • Offering guarantees that software processing behaves as intended

Slide 31

Slide 31 text

Verifying network processing

Slide 32

Slide 32 text

Verifying network processing formally

Slide 33

Slide 33 text

What is out there...

Slide 34

Slide 34 text

What is out there... on off off on off

Slide 35

Slide 35 text

What is out there... on off off on off

Slide 36

Slide 36 text

What is out there... on off off on off

Slide 37

Slide 37 text

What is out there... on off off on off

Slide 38

Slide 38 text

What is out there... on off off on off

Slide 39

Slide 39 text

What is out there... on off off on off Model checking

Slide 40

Slide 40 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; }

Slide 41

Slide 41 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; } -32767 < x < 32767

Slide 42

Slide 42 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; } -32767 < x < 32767 -32767 < y < 32767

Slide 43

Slide 43 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; } -32767 < x < 32767 -32767 < y < 32767 x =2

Slide 44

Slide 44 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; } -32767 < x < 32767 -32767 < y < 32767 x =2 y =1

Slide 45

Slide 45 text

What is out there... on off off on off Model checking A(int x, int y) { if (x == 2) return A(x,x+y); if (y == 1) return A(x-1,y); return x-y; } -32767 < x < 32767 -32767 < y < 32767 x =2 y =1 Symbolic execution

Slide 46

Slide 46 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2)

Slide 47

Slide 47 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet

Slide 48

Slide 48 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet

Slide 49

Slide 49 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet

Slide 50

Slide 50 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet RW src IP and TCP

Slide 51

Slide 51 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet RW src IP and TCP Add ethernet header

Slide 52

Slide 52 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet UDP packet RW src IP and TCP Add ethernet header

Slide 53

Slide 53 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet UDP packet RW src IP and TCP Add ethernet header Encapsulate in IP

Slide 54

Slide 54 text

Our setting FromDevice(eth0) ->Strip(14) ->c :: IPClassifier(„tcp”,”udp”)[0] ->IPRewriter(„pattern 10.0.0.1 20 - -”) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth1) c[1] ->IPEncap(4, 18.26.4.24, 140.247.60.147) ->EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) ->ToDevice(eth2) Arbitrary packet Trim ethernet TCP packet UDP packet RW src IP and TCP Add ethernet header Encapsulate in IP Add ethernet header

Slide 55

Slide 55 text

Arbitrary packet Trim ethernet TCP packet UDP packet RW src IP and TCP Add ethernet header Encapsulate in IP Add ethernet header

Slide 56

Slide 56 text

Arbitrary packet Trim ethernet TCP packet UDP packet RW src IP and TCP Add ethernet header Encapsulate in IP Add ethernet header

Slide 57

Slide 57 text

Our idea

Slide 58

Slide 58 text

Our idea Symbolic execution

Slide 59

Slide 59 text

Our idea Symbolic execution ...

Slide 60

Slide 60 text

Our idea Symbolic execution on all paths... ...

Slide 61

Slide 61 text

Treat sets of packets as n-dimensional spaces

Slide 62

Slide 62 text

Treat sets of packets as n-dimensional spaces Source IP = 169.168.0.1 Source IP = 169.168.0.255

Slide 63

Slide 63 text

Treat sets of packets as n-dimensional spaces Source IP = 169.168.0.1 Source IP = 169.168.0.255 IP proto = 6 IP proto = 17

Slide 64

Slide 64 text

Treat packet processing elements as functions

Slide 65

Slide 65 text

Treat packet processing elements as functions

Slide 66

Slide 66 text

Treat packet processing elements as functions

Slide 67

Slide 67 text

Treat packet processing elements as functions

Slide 68

Slide 68 text

Treat packet processing elements as functions Filtering function

Slide 69

Slide 69 text

Treat packet processing elements as functions Filtering function

Slide 70

Slide 70 text

Treat packet processing elements as functions Filtering function

Slide 71

Slide 71 text

Treat packet processing elements as functions Filtering function

Slide 72

Slide 72 text

Treat packet processing elements as functions Filtering function Modify function

Slide 73

Slide 73 text

Treat packet processing elements as functions Filtering function Modify function Reunion, disjunction, complement, set difference

Slide 74

Slide 74 text

Compute reachability and loop detection

Slide 75

Slide 75 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 76

Slide 76 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 77

Slide 77 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 78

Slide 78 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 79

Slide 79 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 80

Slide 80 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 81

Slide 81 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 82

Slide 82 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 83

Slide 83 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst

Slide 84

Slide 84 text

... where functional programming comes into play

Slide 85

Slide 85 text

Writing flow operations intuitively

Slide 86

Slide 86 text

Writing flow operations intuitively („IPSrc” .=. „192.168.0.1”) .>. nil

Slide 87

Slide 87 text

Writing flow operations intuitively („IPSrc” .=. „192.168.0.1”) .>. nil („proto” .=. „4”) .>. nil

Slide 88

Slide 88 text

Writing flow operations intuitively („IPSrc” .=. „192.168.0.1”) .>. nil („proto” .=. „4”) .>. nil ((„IPSrc” .=. „192.168.0.1”) .>. nil) `cup` ((„proto” .=. „4”) .>. nil)

Slide 89

Slide 89 text

Writing flow operations intuitively („IPSrc” .=. „192.168.0.1”) .>. nil („proto” .=. „4”) .>. nil ((„IPSrc” .=. „192.168.0.1”) .>. nil) `cup` ((„proto” .=. „4”) .>. nil) („DstPort” .=. „80”) .>. ((„IPSrc” .=. „192.168.0.1”) .>. nil) `cup` ((„proto” .=. „4”) .>. nil)

Slide 90

Slide 90 text

Hiding actual representation

Slide 91

Slide 91 text

Hiding actual representation class AsExpression a where (.=.) :: Var -> a -> VarBinding

Slide 92

Slide 92 text

Hiding actual representation class AsExpression a where (.=.) :: Var -> a -> VarBinding instance AsExpression String where v .=. s = ...

Slide 93

Slide 93 text

Hiding actual representation class AsExpression a where (.=.) :: Var -> a -> VarBinding instance AsExpression String where v .=. s = ... instance AsExpression Integer where v .=. i =

Slide 94

Slide 94 text

Hiding actual representation class AsExpression a where (.=.) :: Var -> a -> VarBinding instance AsExpression String where v .=. s = ... instance AsExpression Integer where v .=. i = instance AsExpression Expr where v .=. e = v `Bind` e

Slide 95

Slide 95 text

Hiding actual representation class AsExpression a where (.=.) :: Var -> a -> VarBinding instance AsExpression String where v .=. s = ... instance AsExpression Integer where v .=. i = instance AsExpression Expr where v .=. e = v `Bind` e data VarBinding = Bind Var Expr

Slide 96

Slide 96 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow)

Slide 97

Slide 97 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow)

Slide 98

Slide 98 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow?

Slide 99

Slide 99 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow?

Slide 100

Slide 100 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow? How should I modify the flow?

Slide 101

Slide 101 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow? How should I modify the flow? (m,a) `comp` (m',a') = let mfin f = (m f) && (m' f) afin = a . a' in (mfin, afin)

Slide 102

Slide 102 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow? How should I modify the flow? (m,a) `comp` (m',a') = let mfin f = (m f) && (m' f) afin = a . a' in (mfin, afin) (m,a) `comp` (m',a') = let mfin f = (m f) && (m' (a f)) afin = a . a' in (mfin, afin)

Slide 103

Slide 103 text

Processing elements as functions type Rule = (Flow -> Bool, Flow -> Flow) Should I process this flow? How should I modify the flow? (m,a) `comp` (m',a') = let mfin f = (m f) && (m' f) afin = a . a' in (mfin, afin) (m,a) `comp` (m',a') = let mfin f = (m f) && (m' (a f)) afin = a . a' in (mfin, afin) Building more sofisticated processing from simpler one

Slide 104

Slide 104 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst „Object-oriented” style

Slide 105

Slide 105 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable

Slide 106

Slide 106 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor

Slide 107

Slide 107 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor Visitor

Slide 108

Slide 108 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor Visitor

Slide 109

Slide 109 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor Visitor

Slide 110

Slide 110 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor

Slide 111

Slide 111 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor

Slide 112

Slide 112 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst Visitable „Object-oriented” style Visitable Visitable Visitable Visitable Visitable Visitor

Slide 113

Slide 113 text

How the code looks like...

Slide 114

Slide 114 text

How the code looks like... abstract class Element {

Slide 115

Slide 115 text

How the code looks like... abstract class Element { public boolean match(Flow f);

Slide 116

Slide 116 text

How the code looks like... abstract class Element { public boolean match(Flow f); public Map apply(Flow f);

Slide 117

Slide 117 text

How the code looks like... abstract class Element { public boolean match(Flow f); public Map apply(Flow f); }

Slide 118

Slide 118 text

How the code looks like... abstract class Element { public boolean match(Flow f); public Map apply(Flow f); public void accept(Visitor v){ ... } }

Slide 119

Slide 119 text

How the code looks like... abstract class Visitor { private Flow currentFlow(); public Set visit(Element e){ ... } }

Slide 120

Slide 120 text

How the code looks like... abstract class Visitor { private Flow currentFlow(); public Set visit(Element e){ Map m = ... if (e.match(currentFlow()){ m = e.apply(currentFlow()); // process m } return m.keySet(); } }

Slide 121

Slide 121 text

How the code looks like... abstract class Element { public boolean match(Flow f); public Map apply(Flow f); public void accept(Visitor v){ for (Element e:v.visit(this)){ e.accept(v); } }

Slide 122

Slide 122 text

Compute reachability and loop detection „Functional” style

Slide 123

Slide 123 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst „Functional” style

Slide 124

Slide 124 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst „Functional” style (match,apply) (match,apply) (match,apply) (match,apply)

Slide 125

Slide 125 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst „Functional” style (match,apply) (match,apply) (match,apply) (match,apply) Push ports into the flow

Slide 126

Slide 126 text

Compute reachability and loop detection Src FW R1 R2 R3 Dst „Functional” style (match,apply) (match,apply) (match,apply) (match,apply) Push ports into the flow

Slide 127

Slide 127 text

Compute reachability and loop detection FW R1 R2 R3 „Functional” style (match,apply) (match,apply) (match,apply) (match,apply) Network Function F

Slide 128

Slide 128 text

How the code looks like... F :: [Flow] -> [Flow]

Slide 129

Slide 129 text

How the code looks like... F :: [Flow] -> [Flow] F [] = [„the initial flow, with it’s corresponding port” ]

Slide 130

Slide 130 text

How the code looks like... F :: [Flow] -> [Flow] F [] = [„the initial flow, with it’s corresponding port” ] F X = map (\(f,r) -> apply f r) $ [(f,r) | f <- X , r <- ruleList, match f r]

Slide 131

Slide 131 text

How the code looks like... F :: [Flow] -> [Flow] F [] = [„the initial flow, with it’s corresponding port” ] F X = map (\(f,r) -> apply f r) $ [(f,r) | f <- X , r <- ruleList, match f r] What happens next?

Slide 132

Slide 132 text

We compute...

Slide 133

Slide 133 text

We compute... F [] = F0

Slide 134

Slide 134 text

We compute... F [] = F0 F F0 = F1

Slide 135

Slide 135 text

We compute... F [] = F0 F F0 = F1 ...

Slide 136

Slide 136 text

We compute... F [] = F0 F F0 = F1 ... F Fn = Fn+1

Slide 137

Slide 137 text

We compute... F [] = F0 F F0 = F1 ... F Fn = Fn+1 ...

Slide 138

Slide 138 text

We compute... F [] = F0 F F0 = F1 ... F Fn = Fn+1 ... The sequence stabilises eventually

Slide 139

Slide 139 text

We compute... F [] = F0 F F0 = F1 ... F Fn = Fn+1 ... lfp :: ([Flow] -> [Flow]) -> [Flow] lfp F = let g x y = if x == x ++ y then x else g (x++y) (F y) in g [] (F []) The sequence stabilises eventually

Slide 140

Slide 140 text

Final remarks

Slide 141

Slide 141 text

Final remarks • The code on the slides will not compile

Slide 142

Slide 142 text

Final remarks • The code on the slides will not compile • Many ideas are due: – Kazemian et al. Header Space Analysis: Static Checking For Networks

Slide 143

Slide 143 text

Final remarks • The code on the slides will not compile • Many ideas are due: – Kazemian et al. Header Space Analysis: Static Checking For Networks • One of our contributions is in modelling packet state, by pushing it in the flow

Slide 144

Slide 144 text

Final remarks • The code on the slides will not compile • Many ideas are due: – Kazemian et al. Header Space Analysis: Static Checking For Networks • One of our contributions is in modelling packet state, by pushing it in the flow • Does the functional style beat the object oriented one?