Slide 1

Slide 1 text

Autonomous 2020 3 SQL

Slide 2

Slide 2 text

Safe harbor statement Copyright © 2020, Oracle and/or its affiliates 2

Slide 3

Slide 3 text

Agenda Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 3

Slide 4

Slide 4 text

Copyright © 2020, Oracle and/or its affiliates 4

Slide 5

Slide 5 text

Copyright © 2020, Oracle and/or its affiliates 5 Oracle Advanced Analytics (Classification) (Decision Tree) (Naïve Bayes) (GLM) (Random Forest) (SVM) (ESA) (Clustering) (EM) k (k-means) (O-Cluster) (Time Series) Holt-Winters Regular & Irregular, with and w/o trends & seasonal (Feature Extraction) (ESA) Non-Negative Matrix Factorization (NMF) Singular Value Decomposition (SVD) (PCA) Unsupervised Pair-wise KL Div (Predictive Queries) (Statistical Functions) t F (ANOVA) SQL A1 A2 A3 A4 A5 A6 A7 (Regression) (LM) (GLM) (SVM) (Neural NW) (Abnormally Detection) 1 SVM (Association Rules) Apriori/ market basket (Attribute Importance) (Minimum Description Length) CUR KL

Slide 6

Slide 6 text

Copyright © 2020, Oracle and/or its affiliates 6

Slide 7

Slide 7 text

Copyright © 2020, Oracle and/or its affiliates 7 Oracle Machine Learning • • ※1 Oracle Autonomous Database Oracle Cloud

Slide 8

Slide 8 text

Copyright © 2020, Oracle and/or its affiliates 8 Autonomous Database

Slide 9

Slide 9 text

Oracle Machine Learning Notebook Copyright © 2020, Oracle and/or its affiliates. 9

Slide 10

Slide 10 text

Copyright © 2020, Oracle and/or its affiliates 10 Oracle Machine Learning Notebook Oracle Machine Learning Notebook Autonomous Data Warehouse

Slide 11

Slide 11 text

Copyright © 2020, Oracle and/or its affiliates 11 Notebook

Slide 12

Slide 12 text

Copyright © 2020, Oracle and/or its affiliates 12 Notebook OK

Slide 13

Slide 13 text

Copyright © 2020, Oracle and/or its affiliates 13 Notebook Shift+Enter Add Paragraph • • / • Notebook ※%sql, %script 1 ( )

Slide 14

Slide 14 text

Copyright © 2020, Oracle and/or its affiliates 14 Notebook JSON ※ 3 • %sql : SQL • %script: SQL • %md:

Slide 15

Slide 15 text

Copyright © 2020, Oracle and/or its affiliates 15 Notebook Notebook Notebook ※

Slide 16

Slide 16 text

Copyright © 2020, Oracle and/or its affiliates. 16

Slide 17

Slide 17 text

Copyright © 2020, Oracle and/or its affiliates 17

Slide 18

Slide 18 text

Copyright © 2020, Oracle and/or its affiliates 18 LIQUID 4,898 ID FIXED_AC IDITY VOLATI LE_ACID ITY CITRIC_AC ID RESIDU AL_SUG AR CHLORIDES FREE_SUL FUR_DIOX IDE TOTAL_S ULFUR_D IOXIDE DENSITY PH SULPHATE S ALCOHO L QUALITY 1 3.8 0.31 0.02 11.1 0.036 20 114 0.9925 3.75 0.44 12.4 1 2 3.9 0.225 0.4 4.2 0.03 29 118 0.989 3.57 0.36 12.8 1 3 4.2 0.17 0.36 1.8 0.029 93 161 0.99 3.65 0.89 12 1 4 4.2 0.215 0.23 5.1 0.041 64 157 0.9969 3.42 0.44 8 0 • Primary Key (PK ) • CASE_ID • (1= , 0= ) • TARGET_ID • pH 11 QUALITY ※ P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Slide 19

Slide 19 text

Copyright © 2020, Oracle and/or its affiliates 19 %sql SQL ※ Shift Enter

Slide 20

Slide 20 text

Copyright © 2020, Oracle and/or its affiliates 20 SQL QUALITY

Slide 21

Slide 21 text

Copyright © 2020, Oracle and/or its affiliates 21 %sql 2 select * from liquid; ※ where rownum < 100 select * from liquid sample (10)

Slide 22

Slide 22 text

Copyright © 2020, Oracle and/or its affiliates 22 SQL Scatter Chart Settings xAxis(X ) PH, yAxis(Y ) ALCOHOL

Slide 23

Slide 23 text

Copyright © 2020, Oracle and/or its affiliates 23 SQL X pH Y ALCOHOL

Slide 24

Slide 24 text

Copyright © 2020, Oracle and/or its affiliates 24 NULL %script 1 %script 2 SQL → min max avg stddev count(1) - count( ) NULL

Slide 25

Slide 25 text

Copyright © 2020, Oracle and/or its affiliates 25 LIQUID TRAIN TEST LIQUID SAMPLE SQL %script SQL Show Title LQ_TRAIN LQ_TEST LIQUID 70 LIQUID MINUS LQ_TRAIN

Slide 26

Slide 26 text

Copyright © 2020, Oracle and/or its affiliates 26 TRAIN TEST or or or or TEST TEST TEST TEST TEST TRAIN TEST TEST TEST TEST TEST TRAIN TRAIN TEST TRAIN TRAIN TEST TRAIN TEST TRAIN TEST ※1 ※1 N 1 1 TEST N-1 TRAIN 2 1 TEST N-1 TRAIN N 1 2 3 4 5

Slide 27

Slide 27 text

Copyright © 2020, Oracle and/or its affiliates 27 LQ_MODEL_< >_SETTING LQ_MODEL_< >_APPLY_RESULT LQ_MODEL_< >_LIFT LQ_MODEL_< >_CONFUSION_MATRIX LQ_MODEL_< > Oracle Advanced Analytics ※2

Slide 28

Slide 28 text

Copyright © 2020, Oracle and/or its affiliates 28 1 ※ ALGO_NAME ALGO_RANDOM_FOREST PREP_AUTO ON

Slide 29

Slide 29 text

Copyright © 2020, Oracle and/or its affiliates 29 QUALITY ID CLASSIFICATION

Slide 30

Slide 30 text

Copyright © 2020, Oracle and/or its affiliates 30 TEST ID ( )

Slide 31

Slide 31 text

Copyright © 2020, Oracle and/or its affiliates 31 TEST SELECT v_accuracy SELECT

Slide 32

Slide 32 text

Copyright © 2020, Oracle and/or its affiliates 32 SVM Clone paragraph Clone Paragraph Move Up / Move Down

Slide 33

Slide 33 text

Copyright © 2020, Oracle and/or its affiliates 33 SVM ※2 • RM → SVM • SVM

Slide 34

Slide 34 text

Copyright © 2020, Oracle and/or its affiliates 34 SVM RM → SVM

Slide 35

Slide 35 text

Copyright © 2020, Oracle and/or its affiliates 35 v_accuracy dbms_data_mining.compute_confusion_matrix OUT DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX ( accuracy OUT NUMBER, apply_result_table_name IN VARCHAR2, target_table_name IN VARCHAR2, case_id_column_name IN VARCHAR2, target_column_name IN VARCHAR2, confusion_matrix_table_name IN VARCHAR2, score_column_name IN VARCHAR2 DEFAULT 'PREDICTION', ….. score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Slide 36

Slide 36 text

Copyright © 2020, Oracle and/or its affiliates 36 PRE REC F =1 =0 =1 TP FN =0 FP TN PRE REC SELECT pivot 2 = 2 ⋅ +

Slide 37

Slide 37 text

Copyright © 2020, Oracle and/or its affiliates 37 2 dbms_data_mining.compute_lift

Slide 38

Slide 38 text

Copyright © 2020, Oracle and/or its affiliates 38

Slide 39

Slide 39 text

Copyright © 2020, Oracle and/or its affiliates 39 USER_MINING_MODEL_SETTINGS WHERE model_name or

Slide 40

Slide 40 text

Copyright © 2020, Oracle and/or its affiliates 40 SQL • • Setting • XAxis, Values • X DM$VA

Slide 41

Slide 41 text

Copyright © 2020, Oracle and/or its affiliates 41 SVM DM$VN

Slide 42

Slide 42 text

Copyright © 2020, Oracle and/or its affiliates 42 ODMS_MISSING_VALUE_TREATMENT

Slide 43

Slide 43 text

Copyright © 2020, Oracle and/or its affiliates 43 PREP_AUTO SVM

Slide 44

Slide 44 text

Copyright © 2020, Oracle and/or its affiliates 44 select id, -- prediction( LQ_MODEL_RF using *) as prediction, -- prediction_probability( LQ_MODEL_RF , '1' using *) as probability -- 1 from ; LQ_TEST SQL SQL

Slide 45

Slide 45 text

Copyright © 2020, Oracle and/or its affiliates. 45

Slide 46

Slide 46 text

Copyright © 2020, Oracle and/or its affiliates 46

Slide 47

Slide 47 text

Copyright © 2020, Oracle and/or its affiliates 47 • データの中から関連が強い事象の組合せ(アソシエーション・ルール)を抽出する分析 • POSデータ(レジ精算データ)から「どの商品とどの商品が一緒に買われるか」という 法則性(アソシエーションルール)を調べる目的で、米IBM社が開発した手法 • Apriori (アプリオリ) は、アソシエーションルールを効率的に見つけ出すアルゴリズム の名称 • 同時に購入されやすい商品を見つけるマーケットバスケット分析がよく知られるが、 「Aが起きればBも起きる」場面に広く適用されている

Slide 48

Slide 48 text

Copyright © 2020, Oracle and/or its affiliates 48 業種/業態 分析 活用により得られる効果(例) 総合スーパーマーケット コンビニエンスストア等 流通小売業全般 同時購入商品の組み合わせ 上記の店舗間比較 店舗内での商品陳列の最適化、購買動機 の把握、店舗間での顧客嗜好の比較、新 規出店時の地理的特徴の把握 Eコマース・デジタルコンテンツ産業 テレビショッピングチャンネル等 IDに紐づく過去の累積 購買履歴 サイト内のページ閲覧履歴 顧客ごとにカスタマイズされたメールマ ガジン、インターネット広告、トップ ページによるコンバージョン率の向上 通信サービス ITサービス 工業製品 通信業、製造業全般 製品本体とオプション製品/サービス の組み合わせ オプション製品/サービス同士の組み 合わせ 携帯電話、プロバイダの料金プラン、不 可オプションサービスの提案、オプショ ン商品同士のセット販売による顧客イン センティブ 外食産業 トッピングメニューの組み合わせ 食べ物、飲み物、サイドメニューの組 み合わせ 追加オーダーのリコメンド、新商品、 セットメニューの考案、(時系列比較に よる)顧客動向の調査 銀行、証券会社、保険会社等 金融全般 金融商品の購入状況 投資対象銘柄の提案、顧客の嗜好、選択 基準の把握 ※参考 データアナリティクス実践講座 アクセンチュアアナリティクス著 工藤卓哉、保科学世監修

Slide 49

Slide 49 text

Copyright © 2020, Oracle and/or its affiliates 49 A → B A B Support Confidence Lift Support A → B Confidence A → B Lift A → B A B A B A B A→ B A→ B A Confidence A → B A B B

Slide 50

Slide 50 text

Copyright © 2020, Oracle and/or its affiliates 50 ORDER_ITEMS 29,363 ORDER_ID CATEGORY (カテゴリー) ITEM (商品名称) CNT O_00001 ミネラルウォーター 富士山のおいしい水1L 1 O_00001 卵 卵6個パック 1 O_00001 牛乳 搾りたて牛乳1L 1 O_00002 ミネラルウォーター 特選水 500ml 1 O_00002 ヨーグルト ヨーグルトいちご味 1 ORDER_ID • CASE_ID • CATEGORY • ※ORDER_ID, CATEGORY

Slide 51

Slide 51 text

Copyright © 2020, Oracle and/or its affiliates 51 (CSV Object Storage ) Autonomous Data Warehouse Object Storage Autonomous Data Warehouse クラウド環境 Oracle Database Oracle exp CSV Object Storage DBMS_CLOUD

Slide 52

Slide 52 text

Copyright © 2020, Oracle and/or its affiliates 52 (CSV Object Storage ) Autonomous Data Warehouse OBJ_STORE_CRED DBMS_CLOUD.COPY_DATA CSV Autonomous Data Warehouse Cloud https://speakerdeck.com/oracle4engineer/autonomous-data-warehouse-cloud-yang-nadetarodogaido Cloud

Slide 53

Slide 53 text

Copyright © 2020, Oracle and/or its affiliates 53 %sql SQL

Slide 54

Slide 54 text

Copyright © 2020, Oracle and/or its affiliates 54 SQL

Slide 55

Slide 55 text

Copyright © 2020, Oracle and/or its affiliates 55

Slide 56

Slide 56 text

Copyright © 2020, Oracle and/or its affiliates 56

Slide 57

Slide 57 text

Copyright © 2020, Oracle and/or its affiliates 57 ORDER_ID

Slide 58

Slide 58 text

Copyright © 2020, Oracle and/or its affiliates 58 AR_MODEL_SETTING AR_MODEL_RESULT AR_MODEL Oracle Advanced Analytics ※2

Slide 59

Slide 59 text

Copyright © 2020, Oracle and/or its affiliates 59 1 ※ ASSO_MAX_RULE_LENGTH 3 3 A, B => C A B C ) A => C (A C ) 2 1 ※ (=C) 1 ODMS_ITEM_ID_COLUMN_NAME CATEGORY

Slide 60

Slide 60 text

Copyright © 2020, Oracle and/or its affiliates 60 ORDER_ITEMS ORDER_ID ID DBMS_DATA_MINING.ASSOCIATION

Slide 61

Slide 61 text

Copyright © 2020, Oracle and/or its affiliates 61 USER_MINING_MODEL_SETTINGS WHERE model_name or

Slide 62

Slide 62 text

Copyright © 2020, Oracle and/or its affiliates 62 DM$VA< > RULE_ID RULE_ID=360 → NUMBER_OF_ITEMS A→C A,B →C

Slide 63

Slide 63 text

Copyright © 2020, Oracle and/or its affiliates 63 LIFT 1

Slide 64

Slide 64 text

Copyright © 2020, Oracle and/or its affiliates 64 1 RULE_ID (piece )

Slide 65

Slide 65 text

Copyright © 2020, Oracle and/or its affiliates 65 1

Slide 66

Slide 66 text

Autonomous Data Warehouse Copyright © 2020, Oracle and/or its affiliates. 66

Slide 67

Slide 67 text

Copyright © 2020, Oracle and/or its affiliates 67 購買データ 顧客マスタ 過去 キャンペーン結果 行動履歴 満足度 アンケート 部門マスタ 売上データ 出退勤時刻 出張旅費 働き方改革でのデータ活用例 マーケティング業務でのデータ活用例

Slide 68

Slide 68 text

Copyright © 2020, Oracle and/or its affiliates 68 環境構築に 時間を かけたくない 費用が気に なる・・ データ活用は したいけど 運用が心配 パフォーマンス も心配 セキュリティは 大丈夫? Autonomous Data Warehouse で解決

Slide 69

Slide 69 text

Copyright © 2020, Oracle and/or its affiliates 69 / Autonomous Database Autonomous Database • 導入、運用コストの削減 • 安定運用、高可用性 • 高セキュリティ • 高性能、高可用性を探求し、 唯一無二の存在へ • 圧倒的なシェアを誇り、 数多くのMission Criticalな システムにて稼働実績有り • 途方もない研究開発費を投入 し、他社に追いつけないコア技 術を確立 • お客様の要件を満たす改善、 新規機能を実装 • 自動化機能を実装し、扱いや すい製品へと進化 Cloud の選択肢 最適なプラットフォーム 40年以上の継続開発 Oracle Database + Oracle Exadata + Oracle Cloud Autonomous Database

Slide 70

Slide 70 text

Copyright © 2020, Oracle and/or its affiliates 70 Autonomous Database データベースの名前 管理者パスワード ワークロードの種類 (Autonomous Data Warehouseの 場合はデータウェアハウスを選択) ライセンスタイプ OCPUの数と容量

Slide 71

Slide 71 text

Copyright © 2020, Oracle and/or its affiliates 71 Autonomous Database *Source: Oracle TCO report 2018. 50% savings calculated based on 16 CPU config w/BYOL from on-premises Oracle Database 管理コストを最大80%、TCOを3年間で最大50%削減 ファシリティ管理 サーバー管理 OSインストール/パッチ適用 DBインストール/パッチ適用 バックアップ/リストア HA/DR DB最適化/スケール AP最適化 AP管理 ファシリティ管理 サーバー管理 OSインストール/パッチ適用 DBインストール/パッチ適用 バックアップ/リストア HA/DR DB最適化/スケール AP最適化 AP管理 オンプレミス Autonomous Database 全て お客様管理 お客様管理 オラクル管理

Slide 72

Slide 72 text

Copyright © 2020, Oracle and/or its affiliates 72 Autonomous Data Warehouse 6 67 安全性の高い環境を人手をかけずに Creates a Highly Secure Labor Free Environment 安全に 手作業による運用面でのリスクをなしに 2-3 手作業での 週次パッチ当てが なしに 投資 変革に向け Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Watch Video

Slide 73

Slide 73 text

Copyright © 2020, Oracle and/or its affiliates 73 Autonomous Data Warehouse JAMES ANTHONY CTO, DATA INTENSITY • • • https://www.youtube.com/watch?v=4TCJLhbzRFU

Slide 74

Slide 74 text

Copyright © 2020, Oracle and/or its affiliates 74

Slide 75

Slide 75 text

Copyright © 2020, Oracle and/or its affiliates 75 Data Literacy: A Foundation for Succeeding in a Data-Driven World IDC 80% of time is still spent preparing, searching, and governing data 8

Slide 76

Slide 76 text

Copyright © 2020, Oracle and/or its affiliates 76

Slide 77

Slide 77 text

Copyright © 2020, Oracle and/or its affiliates 77 Oracle Machine Learning Web Notebook SQL Oracle Machine Learning In-Database Analytics Database

Slide 78

Slide 78 text

Copyright © 2020, Oracle and/or its affiliates 78 Autonomous Data Warehouse https://docs.oracle.com/cd/E83857_01/paas/autonomous-data-warehouse-cloud/books.html Oracle Machine Learning Oracle Database 19c https://docs.oracle.com/cd/F19136_01/books.html Data Mining Data Mining Data Mining API Database PL/SQL

Slide 79

Slide 79 text

No content