Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
蔵人体験(甘酒麹造り)2021/6/19~6/20
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
nanamin_iot
June 29, 2021
Science
0
770
蔵人体験(甘酒麹造り)2021/6/19~6/20
nanamin_iot
June 29, 2021
Tweet
Share
More Decks by nanamin_iot
See All by nanamin_iot
スマートハウスの蓄電性能の効率化を実現してみた~電気自動車編~
runrunsan
0
390
いざというときに役立った! IoC(Internet of Cats)ガジェット
runrunsan
0
440
IoT×サーモに挑戦する第一歩
runrunsan
0
400
今こそスマートハウス!
runrunsan
0
4.3k
キャンプでIoT冷蔵庫は使えるのか
runrunsan
0
600
"IoT冷蔵庫"に挑戦!
runrunsan
0
330
キャンプIoTに挑戦!vol.2
runrunsan
0
1.8k
IoT樽に挑戦!
runrunsan
1
3.1k
キャンプIoTに挑戦!
runrunsan
0
600
Other Decks in Science
See All in Science
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
450
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
260
データマイニング - ノードの中心性
trycycle
PRO
0
330
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
150
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
790
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
510
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
720
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
600
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
8k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Thoughts on Productivity
jonyablonski
74
5k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Mobile First: as difficult as doing things right
swwweet
225
10k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
56
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How to make the Groovebox
asonas
2
1.9k
How to build a perfect <img>
jonoalderson
1
4.9k
Transcript
IUUQTLVSBCJUPTUBZDPNCMPHJOGPLVSBCJUPLVSBCJUPUBJLFO ଂਓମݧʢञ߿Γʣ!,63"#*5045":ʢ٦ञʣ ʙ ͳͳΈΜ
ࠓճͷମݧείʔϓ Ҿ༻ɿIUUQTKQTBLFUJNFTDPNLOPXMFEHFXPSETBLF@TBLFLBTV ᶃ ᶄ ᶅ
ञଂʹೖΔલʹ͓ᜄ͍ ੲ͔Βञଂਆͳॴͱ͞Ε͍ͯ·ͨ͠ɻञଂʹೖΔલʹɺ҆શفئͱ͓ᜄ͍ͷਆࣄΛࣥΓߦ͍·͢ɻ
ᶃચถʙਁ௮ ચถɻถΛʮӭ͕ͤΔΑ͏ʹʯચͬͯߙΛམͱ͢࡞ۀͰ͢ɻ ਁਫ࣌ؒඵ୯ҐͰɺقઅؾԹʹΑͬͯม͍͖͑ͯ·͢ɻ
ᶃચถʙਁ௮ ચ͓ͬͨถͷਫؾΛΑ͘Γ·͢ɻ
ᶄৠ͠ʙ์ྫྷʙ߿ࣨͷҾ͖ࠐΈ ࡢચถ͠ਫΓ͓ͨ͠ถΛେ͖ͳৠ͠ثͷதʹೖΕɺۉҰʹৠ͞ΕΔΑ͏ɺް͞Λۉʹ͍͖ͯ͠·͢ɻ ʢ༡ΜͰ͍ΔΘ͚Ͱ͋Γ·ͤΜসʣ
ᶄৠ͠ʙ์ྫྷʙ߿ࣨͷҾ͖ࠐΈ ৠ͕࢝͠·ΔͱɺϞΫϞΫͱ౬ؾ͕ଂதΛ෴͍ਚ͘͠·͢ɻ ञଂͷ͔ࠜΒ౬ؾ͕ग़͍ͯΔͷΛݟͨ͜ͱ͕͋Γ·͕͢ɺ͜Εʮৠ͠ʯ͕ߦΘΕ͍ͯΔαΠϯͳͷͰ͢Ͷɻ
ᶄৠ͠ʙ์ྫྷʙ߿ࣨͷҾ͖ࠐΈ ৠ͕͓͋ͬͨ͠ถΛຯݟɻ ͜ΕΛԳʹೖΕͯӡͼ·͢ɻྗࣄʂ
ᶄৠ͠ʙ์ྫྷʙ߿ࣨͷҾ͖ࠐΈ ৠ͓ͨ͠ถΛۭؾʹ৮Εͤ͞ʮ์ྫྷʯ ͤ͞·͢ɻۉʹ͓ถΛ͛ͯԹΛ ۉҰԽ͢Δͷ͕ϙΠϯτͰ͢ɻ ߿ࣨʢ͜͏͡ΉΖʣʹҾ͖ࠐΈ·͢ɻ ࣮ࡍʹɺݩʹ͋ΔϗʔεΛ௨ͯ͠ถ Λඈͯ͠ӡͿ͜ͱ͋Δͦ͏Ͱ͢ɻ
ᶅ߿ʢ͍ͤ͗͘ʣ ߿ࣨԹˆఔɺ࣪ఔʹอͨΕ͍ͯ·͢ɻ छ߿ʢ৭ͷคΈ͍ͨͳͷʣΛৼΓ͔͚ͯࠞͥɺৼΓ͔͚ͯࠞͥΛճ܁Γฦ͠·ͨ͠ɻ
ᶅ߿ʢ͍ͤ͗͘ʣ ॆʹࠞͬͨ͟ΒɺͰแΜͰอଘ͠·͢ɻԹܭΛͯ͞͠ɺ͓ถͷԹཧΛ͠·͢ʢԹ࣪ཧ͕ॏཁͩͦ͏ʣɻ ॆʹʮԽʯͨ͠ΒɺʮރΒ͠ʯͱ͍͏ఔʢ߿ەͷൃ߬ΛࢭΊΔͨΊͱਫΛඈ͢ʣΛܦͯɺ͔͚ͯ߿͕ɻ͜Ε͕ɺถ ߿༝དྷͷञͷͱͱͳΔͷͰ͢ɻ
ʢ൪֎ฤʣ߿ͷબΓ͚ ߿ͷதʹࠇ͍߿ม৭ͨ͠߿͕ͳ͍͔ɺࢹνΣοΫΛ͠·͢ɻʢ࣮ࢪ͠ͳ͍ञଂ͋Δʣ ञʹͳͬͨͱ͖ʹݟ͕ͨѱ͍ͷͰɺ͜ͷஈ֊ͰऔΓআ͖·͢ɻʢञʹͳ͔ͬͯΒऔΓআ͘͜ͱ͋Δͦ͏Ͱ͢ʣ
ञଂݟֶʙຊञͷஷଂλϯΫ ࠨͷࣸਅɺλϯΫΛ্͔Βݟͨͱ͜Ζɻ ٦ଂञ͞Μͷ߹ɺͷ͕ΜͰ͋Δͷ͕ϙΠϯτɻ λϯΫɺଟ͘ͷञ͞ΜͰΘΕ͍ͯΔʮϗʔϩʔλϯΫʯͰ͢ɻେ͖͍ɻ
ञଂݟֶʙࡡΓʢ্૧ʣ ʮϠϒλࣜʯʢࣗಈѹࡡػʣΛͬͨߜΓɻଟ͘ͷञଂͰΘΕΔɻ ΞίʔσΟΦϯঢ়ͷѹࡡػͷதʹᬯʢΖΈʣΛೖΕͯɺ ྆ଆ͔ΒʢۭؾΛೖΕʣѹྗΛՃ͑ߜΔɻʮ൘പʯ͕Ͱ͖ΔͷϠϒλࣜ ੲͳ͕Βͷʮ૧ʢ;ͳʣߜΓʯɻञାͱݺΕΔାʹᬯΛೖΕɺ ʮ૧ʢ;ͶʣʯͱݺΕΔࡉ͍ಓ۩ͷதʹ ञାΛԿʹॏͶͯฒΔɻϠϒλࣜͱൺֱ͕͔͔ͯ࣌ؒ͠Δɻ
ञଂݟֶʙࠐΈਫ ҿྉʹద͍ͯ͠Δɺͱ͓͖ͷԼਫɻຊञΓʹେྔͷਫΛ͏͜ͱ͔Βɺ ʮ໊ਫ͋Δͱ͜Ζʹ໊ञ͋ΓʯͱݴΘΕΔɻQ)ɺߗͷೈਫɻ
߿ηϛφʔ Ҿ༻ɿIUUQTKQTBLFUJNFTDPNJOGPHSBQIJDTGSFFEPXOMPBE ຊञΓͰɺถͷͰΜΜͷԽͱɺΛΞϧίʔϧʹม͑ΔΞϧίʔϧൃ͕߬ ಉ࣌ฒߦͰͭͷλϯΫͰߦΘΕΔɻʮฒߦෳൃ߬ʯͱݺΕΔ छ߿ʢ߿ࣨͰৼΓ͔͚Δʣɻ छྨΛϒϨϯυ͍ͯͬͯ͠Δ IUUQXXXOJIPOKPV[PVDPKQQSPEVDUTTFJTIV "TQFSHJMMVTPSZ[BF ʢΞεϖϧΪϧεΦϦθʣ
ແࣄଔۀʂ͋Γ͕ͱ͏͍͟͝·ͨ͠
ͦͷଞʙ͓৯ࣄ ͓༦൧ۙྡͷϨετϥϯʮΕΜʯʹͯɻ ࠤٱͷຊञछྨΛҿΈൺ ,63"#*5045":ʹ͋ΔࠤٱͷʮຊञαʔόʔʯͰҿΈൺ̇ ே͝ΜͷϨλεʮ৴भαʔϞϯʢཆ৩χδϚεʣʯ͕ΘΕ͍ͯͨ
ͦͷଞʙ͓෦ ৽ׁͷʮӽޙైࢯʢ͑ͪ͝ͱ͏͡ʣʯ͕ౙͷظؒຊञΓͷͨΊʹʹདྷͯɺ࣮ࡍʹ৸ധ·Γ͍ͯͨ͠ΤϦΞΛվͯ͠Ͱ͖ͨݸࣨɻ ڱ͍Ͱ͕͢γϯϓϧͰ͖Ε͍ɻ
ͦͷଞʙ͓࢈Ͱ͍͖ͨͩ·ͨ͠ ࢀՃऀ͚͕ͩҿΊΔɺඇചͷʮ७ถେۛৢɹແᖤաੜݪञʯ ΦϦδφϧϥϕϧɻ˞ແᖤաੜݪञͱ ʢ˞IUUQTKQTBLFUJNFTDPNLOPXMFEHFXPSETBLF@H@OJIPOTZVXPSE@QBSUʣ ञΛ࡞ΔͨΊͷੜ߿ͱɺञɻ ٦ञͷञɺߴ݈͞Μఆظతʹָ͠·Ε͍ͯͨͦ͏ɻ
ͦͷଞʙ͜ͷͷ༷ࢠ͕ݩͷ৽ฉʹܝࡌ ࢀՃऀͷλΠਓͷφλϙϯ͞Μɺ ୭ΑΓ߿ʹؔͯ͠ৄ͔ͬͨ͠Ͱ͢ɻ λΠͰञΛීٴ͍ͤͨ͞ͱͷ͜ͱʂ