Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player p...
Search
Shinichi Nakagawa
PRO
July 22, 2020
Research
0
3.1k
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player performance prediction with Python
PyCon JP 2020で話す予定の話のダイジェストです.
kawasaki.rb #86 での練習試合.
#Python #DataScience #MLB #Baseball
Shinichi Nakagawa
PRO
July 22, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
270
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.7k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
520
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
4.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
480
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
660
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Code Review Best Practice
trishagee
74
20k
We Have a Design System, Now What?
morganepeng
54
8k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
KATA
mclloyd
PRO
34
15k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Transcript
ٿબखͷ༧ଌϞσϧΛ ͍͍ײ͡ʹ࡞ͬͯΈͨVer 1.0 Shinichi Nakagawa (@shinyorke) kawasaki.rb #86 7पͪΐͬͱLTେձ
Who am I ? • Shinichi Nakagawa(@shinyorke) • JX௨৴ࣾγχΞɾΤϯδχΞ •
࠷ۙͣͬͱσʔλج൫ɾσʔλੳ͍ͯ͠ΔϚϯ • ຊདྷٿσʔλαΠΤϯεʹڧ͍ਓ • ٕज़ސ͡Ί·ͨ͠
kwsk.pyҊ݅Ͱ͢ :bow: PyCon JPʹ2ͿΓ6ճͷ⽁Λ͢Δ͜ͱʹͳΓ·ͯ͠. ٱ͠ͿΓʹนଧͪʹͬͯ·͍Γ·͓͖ͨ͠߹͍͍ͩ͘͞⽁
ʲਤʳࠓճ͖ͬͯͨ͜ͱ ຊ֨తͳ։ൃ4݄͔Β, ࠷ޙͷλεΫ͕௨ͬͨͷ͕͍ͭ࠷ۙ اըɾߏؚΊΔͱ࣮͍ۙϓϩδΣΫτͩͬͨΓ
None
σʔληοτ࡞ɾಛྔநग़ • ϝδϟʔϦʔάͷσʔλʮSean Lahmanʯʮretrosheetʯ ͜ΕΒΛͯ͢BigQueryʹimport • CSV͔Βςʔϒϧ࡞ • ػցֶशλεΫʹඞཁͳಛྔΛ۪ʹࢉग़
ػցֶशλεΫͦͷᶃ ʮࣅ͍ͯΔબखΫϥελΛ࡞Δʯ
कඋҐஔɾͷงғؾͰΫϥελϦϯά • ࡶʹݴ͏ͱ, ʮ˓˓ͬΆ͍બखϥϯΩϯάʯΛ࡞Δ • ྫ͑ࡔຊ༐ਓʢڊਓʣͬΆ͍બखʁͱݴΘΕͨΒ, ʮकඋҐஔ͕γϣʔτʯʮৗʹ3ׂ20ຊྥଧଧͭʯ ͱ͔ͦΜͳײ͡. γϣʔτͰ͋Δ͜ͱϚετ, ͋ͱଧܸ࣍ୈ.
• ଧܸ͓ΑͼҰ෦ͷकඋࢦඪΛͬͯϢʔΫϦουڑΛ ٻΊͯ૯ΓͰ֤બखͷʮͦΕͬΆ͍ϥϯΩϯάʯΛ࡞Εͦ͏.
ۙࣅ࠷ۙ୳ࡧʢANNʣͰͬͯΈͨ • kNNͱ͔k-meansͱ͔Γํ৭ʑ͚͋ͬͨͲANNͰͬͨ݁Ռ ͕͍͖ͳΓ͍͍ײͩͬͨ͡ͷͰ͜Εʹͨ͠. • ANNͷλεΫAnnoy͍ͬͯ͏ϥΠϒϥϦͰര։ൃ. • ϝδϟʔϦʔΨʔ19,000ਓͷσʔλͰͬͨΒ͍͍ײ͡ʹ.
ίʔυʢҰ෦ൈਮʣ˞ಛྔൿີ ֶश͔ΒϞσϧอଘͨͬͨ͜Ε͚ͩ. σʔλେ͖͘ͳ͍ͷͰඵͰऴΘΓ·ͨ͠.
ϚοτɾνϟοϓϚϯʢMLBएखࡾྥखʣʹ͍ۙબख ٬؍తͳσʔλ͔Β, ϑΝϯͱͯͬͯ͠Δͱͯ͠. ͍ۙબख͕ͪΌΜͱू·Γ·ͨ͠, શһࡾྥखͰଧܸͰ݁Ռग़ͤΔϚϯͳͷͰจ۟ͳ͠ʂ
ࣅ͍ͯΔબखूΊʹޭ ʢଞͷϙδγϣϯ͍͍ײͩͬͨ͡ʣ ޙ͔ͬ͜ΒߋʹΧςΰϦʔྨͯ͠ ʮະདྷͷΛ࡞ΓࠐΉʯ ࣄ͕Ͱ͖ͨΒʂ
ػցֶशλεΫͦͷᶄ ʮಉ͡ΧςΰϦͷબखΛݟ͚ͭΔʯ
φΠʔϒϕΠζʹΑΔΧςΰϦʔ͚ • ࣗવݴޠॲཧͷྨλεΫΈ͍ͨͳղ͖ํͰͬͯΈͨ. • ީิʮφΠʔϒϕΠζʯʮϥϯμϜϑΥϨετʯ͋ͨΓ. ࠓճφΠʔϒϕΠζͰͬͨ. • ٿʹ͓͚Δ౷߹తͳೳྗࢦඪʮOPSʯΛ͝ͱͷΧςΰϦʔʹ͚, ͍͔ͭ͘ͷଧܸࢦඪΛϕΫτϧʹ࣮ͯ͠ࢪ. •
࣮ී௨ʹscikit-learnͱPandasͰΓ·ͨ͠.
ͬͨ͜ͱʢཁʣɹ˞ࡶʹॻ͍ͯ·͢ • ֶशσʔλ • ༧ଌ͍ͨ͠બखʹࣅͨબख50ਓͷΛϐοΫΞοϓ • ಛྔൿີͰ͕͢…ී௨ͷଧܸʹӅ͠ຯগʑ • ༧ଌσʔλ •
༧ଌ͍ͨ͠બखͷಛྔ • ݁Ռͷϥϕϧσʔλ • OPSΛ5ஈ֊ͷΧςΰϦʹͨ͠ͷ(1ʙ5) • ্هͰࢦఆͨ͠ΧςΰϦʹଐ͢Δબखͷྸผฏۉ͔ΒͦΕͬΆ͍Λग़͢
༧ଌͱҰॹʹݟͯΈ·͠ΐ͏͔.
ϚοτɾνϟοϓϚϯʢݱ࣮ͷʣ 24ʙ26ࡀʢڈ·Ͱʣͷ. ༧ଌ͍ͨ͠ͷ27ʙ29ࡀͷ.
ϚοτɾνϟοϓϚϯʢ༧ଌ͖ʣ 27ࡀҎ߱ͷΛ༧ଌͨ݁͠ՌΛؚΊͨάϥϑ.
None
ग़͖ͯͨ݁ՌΛ͡Δͱ… • ൺֱత, ݱ࣮ʹଈͯ͠ΔͬΆ͍݁ՌʹͳΓ·ͨ͠. • ʮ28ࡀͷ͕Maxʯʮ29ࡀ͔ΒԼ͕ͬͯΔʯͨΓ͕ϦΞϧ. ※ΞεϦʔτͷମత࠷ߴை26ʙ28ࡀͱݴΘΕ͍ͯ·͢ • ͱ͍͑28ࡀͷຊྥଧ্͕͕ͬͯΔͷ, ͳΜ͔ո͍͠.
͓ͦΒ͘୭͔ͷʹҾͬுΒΕ͍ͯΔ.
Γ͠ɾվળϙΠϯτ • ࠷ޙͷྨ, ϕΠζҎ֎ࢼ͍ͨ͠. • ʮ28ࡀΛʹਰ͑ΔʯϙδγϣϯʹΑͬͯҧ͏આ͋Δ. ͷͰʮ্ͷʯΛٻΊΔλεΫ͕͍͍͔͋ͬͯ. • 2020ͷϝδϟʔϦʔάྫͷͷࢼ߹ͳͷͰ, ༧ଌͦ͜ʹ߹Θ͍ͤͨʢ2ͰׂͬͯऴΘΔʁwʣ
• ͱ͍͏ͷ͕PyCon JP 2020·ͰʹͰ͖ͯΔͣʢVer. 25ʮTsurageʯͰʣ
ଓ͖PyCon JP 2020Ͱʂ #͓͠·͍ #͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)