Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
tereka114
March 16, 2022
Programming
0
300
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.8k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.7k
KDD2023学会参加報告
tereka114
2
650
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
430
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.2k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
250
Jupyter Notebookを納品した話
tereka114
0
530
Multi Scale Recognition with DAG-CNNs
tereka114
0
170
How to use scikit-image for data augmentation
tereka114
0
310
Other Decks in Programming
See All in Programming
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
CSC307 Lecture 01
javiergs
PRO
0
690
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
180
CSC307 Lecture 07
javiergs
PRO
1
560
ぼくの開発環境2026
yuzneri
0
250
24時間止められないシステムを守る-医療ITにおけるランサムウェア対策の実際
koukimiura
1
130
日本だけで解禁されているアプリ起動の方法
ryunakayama
0
290
Apache Iceberg V3 and migration to V3
tomtanaka
0
180
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
250
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
660
高速開発のためのコード整理術
sutetotanuki
1
410
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Design in an AI World
tapps
0
150
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Building an army of robots
kneath
306
46k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
100
Testing 201, or: Great Expectations
jmmastey
46
8.1k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!