Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
Search
tt1717
January 26, 2024
Research
0
62
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 26, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Google DeepMind’s Game AI 2
tt1717
0
11
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
18
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
18
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
71
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
61
[論文サーベイ] Survey on Pokemon AI
tt1717
0
100
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
110
[論文サーベイ] Survey on GPT for Games
tt1717
0
71
[論文サーベイ] Survey on World Models for Games
tt1717
0
190
Other Decks in Research
See All in Research
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
410
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
140
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
170
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
310
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.5k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
490
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
230
POI: Proof of Identity
katsyoshi
0
120
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
110
Featured
See All Featured
AI: The stuff that nobody shows you
jnunemaker
PRO
1
150
A Tale of Four Properties
chriscoyier
162
23k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
48k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
390
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
37
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Utilizing Notion as your number one productivity tool
mfonobong
2
190
Transcript
・walker2Dを使用 ・3通りの訓練で検証 1.正常なロボットのみで訓練 (normal policy) 2.ロボットをランダムに故障させながら訓練 (robust policy) 3.状態遷移の差分を用いて故障させながら訓練 (our
policy) どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・故障度合いが大きいとき,our policyとrubust policyで高い収益を 得られた ・故障度合いが小さいとき,our policyで高い収益を得られた 故障の表現 ・故障する関節をランダムに選択し,関節アクチュエータのトルク に対して,故障係数kをかける ・故障係数kは一様分布U(0.0,2.0)からサンプリングする ・MDPにおける遷移関数に対して,正常時の遷移関数と故障時の遷 移関数の差分を利用して故障度合いを表現する手法を提案 状態遷移差分の学習による耐故障ロボットのための強化学習 (JSAI 2020)大里 虹平, 川本 一彦 https://www.jstage.jst.go.jp/article/pjsai/JSAI2020/0/JSAI2020_4Rin134/_pdf 2024/01/26 論文を表す画像 被引用数:- 1/4
故障の表現 ❏ 正常時の遷移関数Tnormalと故障時の遷移関数Tbrokenが異なることを 利用 ❏ Tnormalと遷移関数Tが等しければ正常,そうでなければ故障とみなす ❏ Stdiff:ロボットの故障度合いを反映したパラメータ ❏ St:t時刻の状態
❏ Stnormal:正常時ロボットを仮定してt時刻の状態 ❏ Tnormalは未知関数なのでニューラルネットワークで表現する ❏ 定常環境でStnormalを収集し,これを教師データとして遷移予測ネッ トワークを訓練する ❏ St^normalとSt^diffは予測値を意味する 2/4
実験結果 ❏ 結果 ❏ 故障度合いが大きいとき,our policyとrobust policyで高い収益 ❏ 故障度合いが小さいとき,our policyで高い収益
3/4 ❏ 実験設定 ❏ 正常なロボットのみで訓練 (normal policy) ❏ ロボットをランダムに故障させな がら訓練 (robust policy) ❏ 状態遷移の差分を用いて故障させ ながら訓練 (our policy) ❏ hip,knee,ankleに対してkを0.25刻 みで故障させて評価する ❏ 各手法に対して3つのシード値で 3200万ステップ訓練する
❏ まとめ ❏ 正常時の遷移関数を学習する ❏ 予測される状態遷移と実際の状態遷移の差分を方策ネットワークに加える ❏ これにより,故障度合いを識別しながら学習する手法を提案 ❏ 提案手法では,正常時および故障時に遷移関数を利用しない方策より高い
収益を獲得した ❏ 感想 ❏ 提案手法の概要とイメージを掴むことができたが,方策ネットワークに入 力される「StとSt^diff」の2つを入力するのをどのように実装しているの か気になる (通常,t時刻に対する状態は1つだけいれる) ❏ 他のロボット (hopper,halfcheetah,ant)による実験でも,同様の結果が得 られるのか気になる ❏ この研究では,オンライン強化学習の設定で行っているが,オフライン強 化学習の設定で行った場合,結果に変化があるのか見てみたい まとめと感想 4/4