Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning and Sentiment Classification i...
Search
Matt D.
May 30, 2011
Programming
1
1k
Machine Learning and Sentiment Classification in Ruby
Matt D.
May 30, 2011
Tweet
Share
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
310
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.4k
Patterns of Patterns
denyspoltorak
0
1.4k
組織で育むオブザーバビリティ
ryota_hnk
0
180
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
780
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
Fluid Templating in TYPO3 14
s2b
0
130
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
730
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
Raku Raku Notion 20260128
hareyakayuruyaka
0
350
Featured
See All Featured
Deep Space Network (abreviated)
tonyrice
0
64
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Building Applications with DynamoDB
mza
96
6.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
WENDY [Excerpt]
tessaabrams
9
36k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
420
Mind Mapping
helmedeiros
PRO
0
89
It's Worth the Effort
3n
188
29k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Transcript
.BDIJOF -FBSOJOH BOE 4FOUJNFOU $MBTTJGJDBUJPO JO 3VCZ by Matt Drozdzynski
@matid
None
.BDIJOF -FBSOJOH … or how to teach your computer to
do back flips for you.
4FOUJNFOU $MBTTJGJDBUJPO … or how to quantify people’s opinions.
#euruko is definitely the most amazing Ruby conference ever!
I’ve been to many dreadful conferences, but #euruko is certainly
not one of them.
Ruby is a true delight compared to how horrendous Java
can be.
d JO 3VCZ
None
None
%BUB (BUIFSJOH
None
None
-BOHVBHF "DDVSBDZ 0% 25% 50% 75% 100% 2007 English Spanish
German Italian Polish
"OOPUBUJPOT … or I have the tweets—now what?
%BUB $MFBOJOH … or how to separate wheat from the
chaff.
'FBUVSF 3FEVDUJPO … or Matt’s crash course in selective ignorance.
$MBTTJGJDBUJPO … and the ‘not so rocket’ science behind it
all.
/BJWF #BZFT Simple and robust Assumes independence of features Scalable!
require "ankusa" require "ankusa/memory_storage" storage = Ankusa::MemoryStorage.new classifier = Ankusa::NaiveBayesClassifier.new(storage)
training.each do |tweet| classifier.train tweet.sentiment, tweet.to_s end sentiment = classifier.classify tweet.to_s
.BYJNVN &OUSPQZ No independence assumptions Suffers from overfitting Substantially slower
than Naive Bayes
require "maxent_string_classifier" classifier = MaxentStringClassifier::Loader.train(Classifier.root + "max_ent" + "data") classification
= classifier.classify tweet.to_s
4VQQPSU 7FDUPS .BDIJOFT Non-probabilistic binary linear classifier Only directly applicable
to two-class problems “Works by constructing a set of hyperplanes in a high or infinite dimensional space”—what?
None
require "eluka" classifier = Eluka::Model.new training.each do |tweet| classifier.add(tweet.features, tweet.sentiment)
end classifier.build sentiment = classifier.classify tweet.features
$PODMVTJPOT … or is the whole thing worth the hassle?
2VFTUJPOT
@matid spkr8.com/t/7678 bit.ly/matid-dissertation bit.ly/matid-dissertation-pdf 5IBOLT