Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kon
July 19, 2019
Science
1
3.7k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
3.1k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.5k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.5k
3rd Place Solution of AutoSpeech 2019
yohrn
0
490
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
970
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
3.1k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
7.3k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
9.3k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
770
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
420
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
460
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
530
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
Algorithmic Aspects of Quiver Representations
tasusu
0
190
NDCG is NOT All I Need
statditto
2
2.8k
データマイニング - コミュニティ発見
trycycle
PRO
0
210
Featured
See All Featured
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
97
Technical Leadership for Architectural Decision Making
baasie
2
250
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
KATA
mclloyd
PRO
34
15k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
94
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12