Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
大きなデータと戦う技術 / fighting-large-data
Search
yuuki takezawa
October 13, 2018
Technology
3
640
大きなデータと戦う技術 / fighting-large-data
明日の開発カンファレンス 2018秋
yuuki takezawa
October 13, 2018
Tweet
Share
More Decks by yuuki takezawa
See All by yuuki takezawa
なぜAI時代に 「イベント」を中心に考えるのか? / Why focus on "events" in the age of AI?
ytake
4
1.8k
PHPでアクターモデルを活用したSagaパターンの実践法 / php-saga-pattern-with-actor-model
ytake
0
2.2k
PHP ステートレス VS ステートフル 状態管理と並行性 / php-stateless-stateful
ytake
0
280
PHPでアクターモデルを理解・体験しよう / Understand and experience the actor model in PHP
ytake
2
820
再考 アクターモデル/ reconsider actor model
ytake
0
1.5k
GoとアクターモデルでES+CQRSを実践! / proto_actor_es_cqrs
ytake
1
610
Phluxorでアクターモデルを 理解・体験しよう / toolkit-for-flexible-actor-models-in-php-phluxor
ytake
1
350
オブジェクトのおしゃべり大失敗 メッセージングアンチパターン集 / messaging anti-pattern collection
ytake
2
1.3k
DRE/SREのプラクティス融合によるクラウドネイティブなデータ基盤作り / dre_sre
ytake
0
970
Other Decks in Technology
See All in Technology
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
250
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
0
110
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
970
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
440
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.8k
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
320
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
190
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
660
Believing is Seeing
oripsolob
1
56
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
How to Ace a Technical Interview
jacobian
281
24k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Build your cross-platform service in a week with App Engine
jlugia
234
18k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Into the Great Unknown - MozCon
thekraken
40
2.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Transcript
େ͖ͳσʔλͱઓ͏ٕज़ yuuki takezawa asucon 2018ळ
Profile • ᖒ ༗و / ytake • גࣜձࣾΞΠελΠϧ CTO •
PHP, Hack, Go, Scala • Apache Hadoop, Apache Spark, Apache Kafka • twitter https://twitter.com/ex_takezawa • facebook https://www.facebook.com/yuuki.takezawa • github https://github.com/ytake
None
Agenda • ΞϓϦέʔγϣϯͱσʔλઃܭ • ղܾ͢ΔͨΊʹ
ΞϓϦέʔγϣϯͱσʔλઃܭ
ΞϓϦέʔγϣϯͷσʔλʹ͍ͭͯ • WebΞϓϦέʔγϣϯͳͲΛࢧ͑Δ RDBMS • IoTͳͲʹද͞ΕΔେنͳσʔλ
ΞϓϦέʔγϣϯͷΛࢧ͖͑ΕΔʁ • ఆ֎ͷΛ͛Δ WebΞϓϦέʔγϣϯ ఆظతͳσʔλϕʔεϦϑΝΫλϦϯάɺ ΞϓϦέʔγϣϯͷϦϑΝΫλϦϯά ͕࣮ࢪͰ͖Δ͔Ͳ͏͔
ΞϓϦέʔγϣϯͷΛࢧ͖͑ΕΔʁ • ϋʔυΣΞɾΞϓϦέʔγϣϯো ΞϓϦέʔγϣϯʹ߹ΘͤͯΫϥυ ͔ɺΦϯϓϨΛબ͢Δ
খ͞ͳνʔϜͷ߹
࠷ॳͷΞϓϦέʔγϣϯ • σʔλϕʔεઃܭ + Active Record etc ϑϨʔϜϫʔΫͰߏங͞ΕΔ ΞϓϦέʔγϣϯ •
গਓͷ։ൃऀͰߏ͞ΕΔ։ൃ৫
ෳνʔϜͷ
ΞϓϦέʔγϣϯͷ • ૿͑ΔΞϓϦέʔγϣϯػೳ • ։ൃνʔϜͷ૿һ εΩϧ༷ʑ
ΞϓϦέʔγϣϯͷ • Ϩίʔυ૿Ճɾ࣮ίʔυ૿ՃʹΑΔ ύϑΥʔϚϯεͷԼ ϥΠϒϥϦͰൃߦ͞ΕΔSQLʹ͍ͭͯ ཧղ͍ͯ͠Δ͔Ͳ͏͔ όΠφϦΛσʔλϕʔεʹ֨ೲʂʁ
ΞϓϦέʔγϣϯͱσʔλϕʔε • खܰʹ͑Δ͔Β͏ Ͱͳٙ͘Λ࣋ͭ ൃߦ͞ΕΔSQLݱࡏͷ ΞϓϦέʔγϣϯنʹ߹͍ͬͯΔ͔Ͳ͏͔ • ϋʔυΣΞ૿ڧͰΓΔ ͕ޙճ͠ʹͳΔ͜ͱ
ΞϓϦέʔγϣϯͷͱσʔλϕʔε • σʔλऔಘ؆ུԽͷͨΊͷ σʔλϕʔεઃܭ • ΞΫηεϩάͳͲͷσʔλΛ֨ೲ ཁҙ
େنνʔϜͷ
ߋͳΔΞϓϦέʔγϣϯͷ • ૿͑ଓ͚ΔΞϓϦέʔγϣϯػೳ • ։ൃνʔϜͷڊେԽ ෳͷνʔϜߏͱ ෳͷεςʔΫϗϧμ
ΞϓϦέʔγϣϯͷ • Ϩίʔυ૿Ճɾ࣮ίʔυ૿ՃʹΑΔ ͞ΒͳΔύϑΥʔϚϯεԼ • ͋ͪͪ͜Ͱى͜Γ࢝ΊΔো
ϦϦʔεΛ༏ઌͤ͞Αʂ
ฐ • ϦϦʔε༏ઌͷͨΊɺ ܧ͗͠ͷΞϓϦέʔγϣϯ • εςʔΫϗϧμ૿Ճʹ͏ ΞϓϦέʔγϣϯͷෳࡶԽ • খதنͷΞϓϦέʔγϣϯ࣌ͷ ઃܭͱ࣮༝དྷͷෆ۩߹͕૿Ճ
σʔλઃܭ༝དྷͷ • େྔσʔλͷϑϧεΩϟϯ • INDEXෆͷͨΊͷύϑΥʔϚϯεԼ • γϯϓϧͳߏނͷػೳՃ࣌ͷ ΫΤϦෳࡶԽ
ղܾ͢ΔͨΊʹ
ෳࡶ͞ͱͷઓ͍
ΞϓϦέʔγϣϯͷྨ • ॻ͖ࠐΈ͕ଟͷΞϓϦέʔγϣϯ • ಡΈࠐΈ͕ଟͷΞϓϦέʔγϣϯ ඞͣͲͪΒ͔ʹྨ͞ΕΔ
྆ํ͋Γ·͚͢Ͳɾɾʁ
ΞϓϦέʔγϣϯͷ୯Ґ • ҰͭͷΞϓϦέʔγϣϯʹ ͨ͘͞Μͷػೳ͕٧·͍ͬͯΔέʔε ػೳҰͭͣͭΛղͯ͠ߟ͑Δ
ॻ͖ࠐΈଟͷΞϓϦέʔγϣϯ • ॻ͖ࠐΈʹڧ͘ɺ εέʔϧ͕༰қͳσʔλϕʔε Cassandra, Dynamodb, MongoDB • ػೳ୯ҐͰߟ͑Δ ܾࡁܥͳΒRDBMSซ༻ͳͲ
ಡΈࠐΈଟͷΞϓϦέʔγϣϯ • RDBMSͷΈͰे • LIKEݕࡧͳͲElasticsearch, Solr
ॻ͖ࠐΈͱಡΈࠐΈͷ౷߹ • ͲͪΒ͔͚ͩͰΖ͏ͱ͠ͳ͍ࣄҰͭ • Message Brokerซ༻ʹΑΔࢄॲཧ Apache Kafka, RabbitMQ Amazon
SQS, Amazon Kinesis(Firehose)
CQRS "A few myths about CQRS". Ouarzy's Blog. http://www.ouarzy.com/2016/10/02/a-few-myths-about-cqrs/
ࢀর
࣮ྫ
େྔσʔλͷΞϓϩʔν
େྔσʔλͷΞϓϩʔν Ϣʔβʔͷ࣌ܥྻߦಈϩά͕ QIQSELBGLBܦ༝ͰૹΒΕͯ͘Δ
େྔσʔλͷΞϓϩʔν "QBDIF,BGLB "QBDIF;PPLFFQFS QBSUJUJPO ݱࡏԯ͘Β͍ ΞϓϦέʔγϣϯͷোɾऔΓ͜΅͠ͳ͠
େྔσʔλͷΞϓϩʔν σʔλϕʔεΛ݁߹ͯ͠ϏδωεϩδοΫٵऩ QVTI௨ࢦࣔͳͲΠϕϯτΛૹ৴ ଞαʔϏε͕SBCCJUNRΛ͍ͬͯΔͨΊ
େྔσʔλͷΞϓϩʔν ,BGLB$POOFDUʹΑΔసૹΛซ༻
େྔσʔλͷΞϓϩʔν $BTTBOESB $MVTUFS ͪ͜Βԯͪΐͬͱ͘Β͍ োͳ͠ɾίϯύΫγϣϯఆظ࣮ߦͰ τϥϒϧͳ͠
ूܭܥσʔλͱͷઓ͍
ΞΫηεϩάͳͲͷσʔλͷ׆༻ • ΞΫηεϩάͳͲͷղܾํ๏ • ΞϓϦέʔγϣϯͰఏڙ͞ΕΔػೳ ϩάΛར༻͢ΔϨίϝϯσʔγϣϯ ੳػೳ
ϩάσʔλͷΞϓϩʔν • ΄ͱΜͲաڈͷσʔλͷूܭͰ ΄΅ෆม • ूܭޙʹ ଞͷσʔλͱֻ͚߹ΘͤΔͳͲ
ϩάσʔλͷΞϓϩʔν • RDBMSͰूܭ ୯७ͳεϨʔϒͱ͓ͯ͘͠ࣄ ेԯҎ্ͷσʔλͰແཧ͠ͳ͍ • ूܭςʔϒϧͱΞϓϦέʔγϣϯ༻ͷ ςʔϒϧซ༻͠ͳ͍
ϩάσʔλͷΞϓϩʔν • HDFSͰूܭ RDBMS͔ΒApache Sqoopɺ Apache SparkͳͲͰసૹ • ूܭॲཧApache SparkͳͲͰߦ͍ɺ
ଞͷσʔλϕʔεͱ݁߹͠ɺ֨ೲ
࣮ྫ
ϩάσʔλͷΞϓϩʔν
ϩάσʔλͷΞϓϩʔν ूܭରͷ σʔλϕʔεɾςʔϒϧΛసૹ
ϩάσʔλͷΞϓϩʔν )%'43%#.4ͷσʔλ Λอ
ϩάσʔλͷΞϓϩʔν )%'4ʹ͋Δσʔλɺ ଞͷ3%#.4্ͷσʔλΛ݁߹
ϩάσʔλͷΞϓϩʔν ूܭॲཧޙ࠶ͼ)%'4ͳͲʹ ֨ೲ͢͠FUD
ूܭσʔλͱϦΞϧλΠϜσʔλͷΞϓϩʔν • ूܭ݁ՌΛ֨ೲͨ͠σʔλετϨʔδʴ ετϦʔϜॲཧͷΈ߹Θͤ • WebΞϓϦέʔγϣϯͰ ूܭߦΘͳ͍
KappaΞʔΩςΫνϟ
KappaΞʔΩςΫνϟ
࣮ྫ
ϩάσʔλͷΞϓϩʔν ͦͷ2
ϩάσʔλͷΞϓϩʔν ͦͷ2 ༷ʑͳΞϓϦέʔγϣϯ͔Β σʔλૹ৴
ϩάσʔλͷΞϓϩʔν ͦͷ2 "QBDIF,BGLB͕ શͯͷσʔλΛड৴
ϩάσʔλͷΞϓϩʔν ͦͷ2 ,BGLB 4QBSL4USFBNJOH ΞϓϦέʔγϣϯ͔Βૹ৴͞Εͨσʔλͱɺ 3%#.4ʹ֨ೲ͞ΕͨσʔλΛ݁߹͠ɺ ूܭɾूΛߦ͏
ϩάσʔλͷΞϓϩʔν ͦͷ2 ूܭɾू͞ΕͨσʔλΛɺ ಡΈࠐΈͰར༻͢ΔΞϓϦέʔγϣϯʹ ߹Θͤͯอ $BTTBOESBͱ4QBSL4USFBNJOHͷΈͰ ೖग़ྗΛߦ͏έʔε
ϩάσʔλͷΞϓϩʔν ͦͷ2 ूܭɾू͞Εͨσʔλͷ͏ͪ ༷ʑͳՕॴͰར༻͞ΕΔͷɺ)%'4 ࠶ܭࢉɺোൃੜ࣌ʹ෮چͤ͞ΔͳͲ
ϩάσʔλͷΞϓϩʔν ͦͷ2 ΞϓϦέʔγϣϯଆ͔Β $BTTBOESBͷΈʹ͍߹ΘͤΛߦ͏
·ͱΊ
·ͱΊ • نʹ߹Θͤͨσʔλઃܭ ఆظతͳσʔλϕʔεϦϑΝΫλϦϯά • దࡐదॴΛݟۃΊΔٕज़ • ΞϓϦέʔγϣϯͱઓ͏৺