Slide 11
Slide 11 text
Why new axiomatic rules: example 2
Given, M is a two-dimensional matrix and e(k, i) is an expression
depending on matrix indices k and i, consider the following triple:
{Q(M ← rep(M, mat(e
1
, e
2
, e
3
, e
4
), e(s, t)))}
for(k = e
1
; k <= e
2
; k++)
for(i = e
3
; i <= e
4
; i++)
M[k][i] = e(k, i);
{Q}
where matrix rep(M, mat(e
1
, e
2
, e
3
, e
4
), e(s, t))) results from replacement
of all elements corresponding to sub-matrix mat(e
1
, e
2
, e
3
, e
4
) by
expression e.
All these logical functions (rep, mat, etc) are dened by a set of
axioms. For example
rep(rep(M, S
1
, e(s, t)), S
2
, e(s, t)) = rep(M, S
1
∪ S
2
, e(s, t))