Slide 3
Slide 3 text
• Alex et al., 2007, multi-layer CRFs
• Ju et al., 2018, stacked flat NER layer
• Wang et al., 2020a, pyramid layer
從外至內 (或從內至外) 提取實體,
但會引起錯誤累積、神經層錯亂
堆疊法
Stack-based approaches
圖譜法
Graph-based
approaches
• Finkel and Manning, 2009, CRF with parse tree
• Lu and Roth, 2015, hypergraph
• Wang and Lu, 2018, neural segmental hypergraph
• Katiyar and Cardie, 2018, LSTM with hypergraph
• Luo and Zhao, 2020, bipartite flat graph network
使用圖譜提取實體,但難以優化
區域法
Region-based
approaches
先辨別可能實體位置,再賦予實體標籤
• Xu et al., 2017, FOFE & FFNN
• Fisher and Vlachos, 2019, merge and label
• Xia et al, 2019, detect and classify
• Zheng et al., 2019, get boundary and then classify
• Wang et al., 2020b, head-tail detector and token tagger
閱讀理解法
Machine Reading Comprehension
approaches
• Levy et al, 2017, MRC for relation extraction
• Li et al., 2019, MRC for relation extraction
• McCann et al, 2018, MRC for NLP Decathlon
• Yin et al., 2020, MRC for sentiment analysis
• Li et al., 2020, MRC for named entity recognition
使用問答框架,重新塑造 NLP 問題
• Segal et al., 2019, multi-span extraction
輔以提取策略
序列標註
Sequence Labeling
• Lafferty et al., 2001
• Hammerton, 2003
• Ratinov and Roth, 2009
• Collobert et al., 2011
• Huang et al., 2015
• Ma and Hovy, 2016
• Peters et al., 2018
• Devlin et al., 2019
一般來說,以序列標註
的視角處理 NER 任務,
但過往資料集只含有單
含義實體