Slide 1

Slide 1 text

as.js A FL O C K of FU N C T I O N S COMBINATORS, LAMBDA CALCULUS, & CHURCH ENCODINGS in JAVASCRIPT

Slide 2

Slide 2 text

glebec glebec glebec glebec g_lebec Gabriel Lebec github.com/glebec/lambda-talk formerly @ currently*@ presenting @ *Views and opinions in this presentation are my own and do not represent those of my employer.

Slide 3

Slide 3 text

a.a IDENTITY

Slide 4

Slide 4 text

λ JS I = a => a I := a.a

Slide 5

Slide 5 text

λ JS I = a => a I := a.a

Slide 6

Slide 6 text

λ JS I(x) === ? I x = ? I := a.a I = a => a

Slide 7

Slide 7 text

λ JS I(x) === x I x = x I := a.a I = a => a

Slide 8

Slide 8 text

λ JS I(I) === ? I I = ? I := a.a I = a => a

Slide 9

Slide 9 text

λ JS I(I) === I I I = I I := a.a I = a => a

Slide 10

Slide 10 text

id 5 == 5

Slide 11

Slide 11 text

?

Slide 12

Slide 12 text

a.a

Slide 13

Slide 13 text

a.a FUNCTION SIGNIFIER

Slide 14

Slide 14 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE

Slide 15

Slide 15 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE RETURN EXPRESSION

Slide 16

Slide 16 text

a.a FUNCTION SIGNIFIER PARAMETER VARIABLE RETURN EXPRESSION LAMBDA ABSTRACTION

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

-CALCULUS SYNTAX expression ::= variable identifier | expression expression application | variable . expression abstraction | ( expression ) grouping

Slide 19

Slide 19 text

λ JS →

Slide 20

Slide 20 text

VARIABLES x x (a) (a)

Slide 21

Slide 21 text

f a f(a) f a b f(a)(b) (f a) b (f(a))(b) f (a b) f(a(b)) APPLICATIONS

Slide 22

Slide 22 text

a.b a => b a.b x a => b(x) a.(b x) a => (b(x)) (a.b) x (a => b)(x) a.b.a a => b => a a.(b.a) a => (b => a) ABSTRACTIONS

Slide 23

Slide 23 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 24

Slide 24 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 25

Slide 25 text

((a.a)b.c.b)(x)e.f β-REDUCTION

Slide 26

Slide 26 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 27

Slide 27 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 28

Slide 28 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 29

Slide 29 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f β-REDUCTION

Slide 30

Slide 30 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 31

Slide 31 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 32

Slide 32 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 33

Slide 33 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f β-REDUCTION

Slide 34

Slide 34 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION

Slide 35

Slide 35 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION

Slide 36

Slide 36 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION β-NORMAL FORM

Slide 37

Slide 37 text

((a.a)b.c.b)(x)e.f = (b.c.b) (x)e.f = (c.x) e.f = x β-REDUCTION* β-NORMAL FORM *not covered: evaluation order, variable collision avoidance

Slide 38

Slide 38 text

f.ff MOCKINGBIRD

Slide 39

Slide 39 text

λ JS M = f => f(f) M := f.ff

Slide 40

Slide 40 text

λ JS M = f => f(f) M := f.ff

Slide 41

Slide 41 text

λ JS M = f => f(f) M := f.ff

Slide 42

Slide 42 text

λ JS M = f => f(f) M := f.ff

Slide 43

Slide 43 text

λ JS M(I) === ? M I = ? M := f.ff

Slide 44

Slide 44 text

λ JS M(I) === I(I) M I = I I M := f.ff

Slide 45

Slide 45 text

λ JS M(I) === I(I) && I(I) === ? M I = I I = ? M := f.ff

Slide 46

Slide 46 text

λ JS M(I) === I(I) && I(I) === I M I = I I = I M := f.ff

Slide 47

Slide 47 text

λ JS M(M) === ? M M = ? M := f.ff

Slide 48

Slide 48 text

λ JS M(M) === M(M) M M = M M M := f.ff

Slide 49

Slide 49 text

λ JS M(M) === M(M) === ? M M = M M = ? M := f.ff

Slide 50

Slide 50 text

λ JS M(M) === M(M) === M M = M M = M M = … // stack overflow M := f.ff M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M

Slide 51

Slide 51 text

λ JS M M = M M = M M = Ω // stack overflow M := f.ff M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M M(M) === M(M) === M(M) === M(M) === M

Slide 52

Slide 52 text

a.b.c.b a => b => c => b abc.b a => b => c => b (a, b, c) => b = ABSTRACTIONS, again

Slide 53

Slide 53 text

((a.a)bc.b)(x)e.f β-REDUCTION, again

Slide 54

Slide 54 text

((a.a)bc.b)(x)e.f β-REDUCTION, again

Slide 55

Slide 55 text

((a.a)bc.b)(x)e.f β-REDUCTION, again

Slide 56

Slide 56 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 57

Slide 57 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 58

Slide 58 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 59

Slide 59 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f β-REDUCTION, again

Slide 60

Slide 60 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 61

Slide 61 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 62

Slide 62 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 63

Slide 63 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f β-REDUCTION, again

Slide 64

Slide 64 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f = x β-REDUCTION, again

Slide 65

Slide 65 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f = x β-REDUCTION, again

Slide 66

Slide 66 text

((a.a)bc.b)(x)e.f = (bc.b) (x)e.f = (c.x) e.f = x β-REDUCTION, again β-NORMAL FORM

Slide 67

Slide 67 text

ab.a KESTREL

Slide 68

Slide 68 text

λ JS K = a => b => a K := ab.a = a.b.a

Slide 69

Slide 69 text

λ JS K(M)(I) === ? K M I = ? K := ab.a K = a => b => a

Slide 70

Slide 70 text

λ JS K(M)(I) === M K M I = M K := ab.a K = a => b => a

Slide 71

Slide 71 text

λ JS K(M)(I) === M K(I)(M) === ? K M I = M K I M = ? K := ab.a K = a => b => a

Slide 72

Slide 72 text

λ JS K(M)(I) === M K(I)(M) === I K M I = M K I M = I K := ab.a K = a => b => a

Slide 73

Slide 73 text

const 7 2 == 7

Slide 74

Slide 74 text

λ JS K(I)(x) === ? K I x = ? K := ab.a K = a => b => a

Slide 75

Slide 75 text

λ JS K(I)(x) === I K I x = I K := ab.a K = a => b => a

Slide 76

Slide 76 text

λ JS K(I)(x)(y) === I(y) K I x y = I y K := ab.a K = a => b => a

Slide 77

Slide 77 text

λ JS K(I)(x)(y) === I(y) && I(y) === ? K I x y = I y = ? K := ab.a K = a => b => a

Slide 78

Slide 78 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 79

Slide 79 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 80

Slide 80 text

λ JS K I x y = I y = y K := ab.a K = a => b => a K(I)(x)(y) === I(y) && I(y) === y

Slide 81

Slide 81 text

ab.b KITE

Slide 82

Slide 82 text

λ JS KI = a => b => b KI = K(I) KI := ab.b = K I

Slide 83

Slide 83 text

λ JS KI(M)(K) === ? KI M K = ? KI := ab.b KI = a => b => b

Slide 84

Slide 84 text

λ JS KI(M)(K) === K KI M K = K KI := ab.b KI = a => b => b

Slide 85

Slide 85 text

λ JS KI(M)(K) === K KI(K)(M) === ? KI M K = K KI K M = ? KI := ab.b KI = a => b => b

Slide 86

Slide 86 text

λ JS KI(M)(K) === K KI(K)(M) === M KI M K = K KI K M = M KI := ab.b KI = a => b => b

Slide 87

Slide 87 text

λ JS KI(M)(K) === K KI(K)(M) === M KI M K = K KI K M = M KI := ab.b KI = a => b => b

Slide 88

Slide 88 text

?

Slide 89

Slide 89 text

SCHÖNFINKEL CURRY SMULLYAN Identitätsfunktion Konstante Funktion verSchmelzungsfunktion verTauschungsfunktion Zusammensetzungsf. I K S C B Idiot Kestrel Starling Cardinal Bluebird Ibis?

Slide 90

Slide 90 text

No content

Slide 91

Slide 91 text

?

Slide 92

Slide 92 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER TH E FO R M A L I Z AT I O N O F MAT H E M AT I C A L LO G I C PÉTER

Slide 93

Slide 93 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER FO R M A L NO TAT I O N FO R FU N C T I O N S 1889 PE A N O AR I T H M E T I C PÉTER

Slide 94

Slide 94 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER AX I O M AT I C LO G I C · FN NO TAT I O N FU N C T I O N S A S GR A P H S · CU R RY I N G 1891 PÉTER

Slide 95

Slide 95 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER PR I N C I P I A MAT H E M AT I C A 1910 RU S S E L L ’S PA R A D OX · FN NO TAT I O N PÉTER

Slide 96

Slide 96 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER CO M B I N AT O RY LO G I C CO M B I N AT O R S · CU R RY I N G 1920 PÉTER

Slide 97

Slide 97 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER FU N C T I O N A L SY S T E M O F SE T TH E O RY 1925 (OV E R L A P P E D W I T H CO M B I N AT O RY LO G I C ) PÉTER

Slide 98

Slide 98 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER CO M B I N AT O RY LO G I C (AG A I N ) CO M B I N AT O R S · M A N Y C O N T R I B U T I O N S 1926 PÉTER

Slide 99

Slide 99 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER D I S C OV E R S SC H Ö N F I N K E L “This paper anticipates much of what I have done.” 1927 PÉTER

Slide 100

Slide 100 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER IN C O M P L E T E N E S S TH E O R E M S 1931 EN D I N G T H E SE A RC H FO R SU F F I C I E N T AX I O M S PÉTER

Slide 101

Slide 101 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER RE C U R S I V E FU N C T I O N TH E O RY 1932 RE K U R S I V E FU N K T I O N E N PÉTER

Slide 102

Slide 102 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER -CA L C U L U S AN EF F E C T I V E MO D E L O F CO M P U TAT I O N 1932 PÉTER

Slide 103

Slide 103 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER I N C O N S I S T E N C Y O F S P E C I A L I Z E D 1931–1936 C O N S I S T E N C Y O F P U R E PÉTER

Slide 104

Slide 104 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER SO LV E S T H E DE C I S I O N PRO B L E M V I A T H E -CA L C U L U S 1936 PÉTER

Slide 105

Slide 105 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER SO LV E S T H E DE C I S I O N PRO B L E M 1936 V I A T H E TU R I N G MAC H I N E PÉTER

Slide 106

Slide 106 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER ES TA B L I S H E S T H E CH U RC H -TU R I N G TH E S I S 1936 -CA L C U L U S 㱻 TU R I N G MAC H I N E PÉTER

Slide 107

Slide 107 text

PEANO FREGE RUSSELL SCHÖNFINKEL VON NEUMANN CURRY CHURCH GÖDEL TURING KLEENE ROSSER O B TA I N S PH D U N D E R CH U RC H 1936–1938 PU B L I S H E S 1S T FI X E D -PO I N T CO M B I N AT O R PÉTER

Slide 108

Slide 108 text

combinator?

Slide 109

Slide 109 text

COMBINATORS functions with no free variables

Slide 110

Slide 110 text

COMBINATORS functions with no free variables b.b combinator b.a not a combinator

Slide 111

Slide 111 text

COMBINATORS functions with no free variables b.b combinator b.a not a combinator ab.a combinator a.ab not a combinator

Slide 112

Slide 112 text

COMBINATORS functions with no free variables b.b combinator b.a not a combinator ab.a combinator a.ab not a combinator abc.c(e.b) combinator

Slide 113

Slide 113 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 114

Slide 114 text

CARDINAL fab.fba

Slide 115

Slide 115 text

λ JS C = f => a => b => f(b)(a) C := fab.fba

Slide 116

Slide 116 text

λ JS C(K)(I)(M) === ? C K I M = ? C := fab.fba C = f => a => b => f(b)(a)

Slide 117

Slide 117 text

λ JS C(K)(I)(M) === M C K I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 118

Slide 118 text

λ JS C(K)(I)(M) === M C K I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 119

Slide 119 text

λ JS KI(I)(M) === M KI I M = M C := fab.fba C = f => a => b => f(b)(a)

Slide 120

Slide 120 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 121

Slide 121 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 122

Slide 122 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a first, const const KI Kite ab.b = KI = CK second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°-1° composition (.) B1 Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id

Slide 123

Slide 123 text

flip const 1 8 == 8

Slide 124

Slide 124 text

so?

Slide 125

Slide 125 text

-CALCULUS abstract symbol rewriting functional computation TURING MACHINE hypothetical device state-based computation (f.ff)a.a purely functional programming languages higher-level machine-centric languages assembly languages machine code higher-level abstract stateful languages real computers

Slide 126

Slide 126 text

TM

Slide 127

Slide 127 text

EVERYTHING CAN BE FUNCTIONS *though in FP, not everything IS or SHOULD BE functions **but maybe more than you expect

Slide 128

Slide 128 text

… TRUE FALSE NOT AND OR BEQ

Slide 129

Slide 129 text

!x == y || (a && z)

Slide 130

Slide 130 text

!x == y || (a && z)

Slide 131

Slide 131 text

how‽

Slide 132

Slide 132 text

λ JS bool

Slide 133

Slide 133 text

λ JS const result = bool ? exp1 : exp2

Slide 134

Slide 134 text

λ JS const result = bool ? exp1 : exp2 // true

Slide 135

Slide 135 text

λ JS const result = bool ? exp1 : exp2 // false

Slide 136

Slide 136 text

λ JS const result = bool ? exp1 : exp2

Slide 137

Slide 137 text

λ JS const result = bool ? exp1 : exp2 result := ?

Slide 138

Slide 138 text

λ JS const result = bool ? exp1 : exp2 result := bool ? exp1 : exp2

Slide 139

Slide 139 text

λ JS const result = bool ? exp1 : exp2 result := bool ? exp1 : exp2

Slide 140

Slide 140 text

λ JS const result = bool ? exp1 : exp2 result := bool exp1 exp2

Slide 141

Slide 141 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2

Slide 142

Slide 142 text

λ JS result := func exp1 exp2 const result = bool (exp1) (exp2) // true

Slide 143

Slide 143 text

λ JS result := func exp1 exp2 const result = bool (exp1) (exp2) // false

Slide 144

Slide 144 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2 TRUE FALSE

Slide 145

Slide 145 text

λ JS const result = bool (exp1) (exp2) result := func exp1 exp2 K KI

Slide 146

Slide 146 text

λ JS const T = K const F = KI TRUE := K FALSE := KI = C K CHURCH ENCODINGS: BOOLEANS

Slide 147

Slide 147 text

λ JS p

Slide 148

Slide 148 text

λ JS !p

Slide 149

Slide 149 text

λ JS !p ! p

Slide 150

Slide 150 text

λ JS !p ! p

Slide 151

Slide 151 text

λ JS not(p) NOT p

Slide 152

Slide 152 text

λ JS not(T) === F not(F) === T NOT T = F NOT F = T

Slide 153

Slide 153 text

λ JS not(K) === KI not(KI) === K NOT K = KI NOT (KI) = K

Slide 154

Slide 154 text

λ JS not(K) === KI not(KI) === K NOT K = KI NOT (KI) = K ab.a ba.a ba.a ab.a

Slide 155

Slide 155 text

λ JS C(K) (chirp)(tweet) === tweet C(KI)(chirp)(tweet) === chirp C K = KI C (KI) = K

Slide 156

Slide 156 text

λ JS C(T) (chirp)(tweet) === tweet C(F) (chirp)(tweet) === chirp C T = F C F = T

Slide 157

Slide 157 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 158

Slide 158 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 159

Slide 159 text

λ JS not(p) NOT p F T F T

Slide 160

Slide 160 text

λ JS not(T) NOT T F T F T

Slide 161

Slide 161 text

λ JS not(F) NOT F F T F T

Slide 162

Slide 162 text

λ JS not( ) NOT F T F T p p

Slide 163

Slide 163 text

λ JS p F T F T p ( ) ( )

Slide 164

Slide 164 text

λ JS T F T F T T ( ) ( ) K K

Slide 165

Slide 165 text

λ JS ( ) ( ) T F T F T T K K KI KI

Slide 166

Slide 166 text

λ JS p F T F T p ( ) ( )

Slide 167

Slide 167 text

λ JS ( ) ( ) F F T F T F KI KI

Slide 168

Slide 168 text

λ JS ( ) ( ) F F T F T F KI KI K K

Slide 169

Slide 169 text

λ JS p F T F T p ( ) ( )

Slide 170

Slide 170 text

λ JS p F T F T p ( ) ( ) p . p =>

Slide 171

Slide 171 text

λ JS const not = p => p(F)(T) NOT := p.pFT

Slide 172

Slide 172 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 173

Slide 173 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 174

Slide 174 text

λ JS const and = ? AND := ?

Slide 175

Slide 175 text

λ JS const and = ? => ? AND := ?.?

Slide 176

Slide 176 text

λ JS const and = p => q => ? AND := pq.?

Slide 177

Slide 177 text

λ JS const and = p => q => p… AND := pq.p…

Slide 178

Slide 178 text

λ JS const and = p => q => p(?)(¿) AND := pq.p?¿

Slide 179

Slide 179 text

λ JS const and = p => q => p(?)(¿) AND := pq.p?¿ F F

Slide 180

Slide 180 text

λ JS const and = p => q => p(?)(¿) AND := pq.p?¿ F F

Slide 181

Slide 181 text

λ JS const and = p => q => p(?)(F) AND := pq.p?F

Slide 182

Slide 182 text

λ JS const and = p => q => p(?)(F) AND := pq.p?F T T

Slide 183

Slide 183 text

λ JS const and = p => q => p(?)(F) AND := pq.p?F T T

Slide 184

Slide 184 text

λ JS const and = p => q => p(q)(F) AND := pq.pqF

Slide 185

Slide 185 text

pq.p F q

Slide 186

Slide 186 text

pq.p F q

Slide 187

Slide 187 text

pq.p p q

Slide 188

Slide 188 text

pq.p p q

Slide 189

Slide 189 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 190

Slide 190 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 191

Slide 191 text

λ JS const or = ? OR := ?

Slide 192

Slide 192 text

λ JS const or = p => q => … OR := pq.…

Slide 193

Slide 193 text

λ JS const or = p => q => p(?)(¿) OR := pq.p?¿

Slide 194

Slide 194 text

λ JS const or = p => q => p(T)(¿) OR := pq.pT¿

Slide 195

Slide 195 text

λ JS const or = p => q => p(T)(q) OR := pq.pTq

Slide 196

Slide 196 text

λ JS const or = p => q => p(p)(q) OR := pq.ppq

Slide 197

Slide 197 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 198

Slide 198 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 199

Slide 199 text

pq.ppq

Slide 200

Slide 200 text

( pq.ppq ) xy

Slide 201

Slide 201 text

( pq.ppq ) xy = ?

Slide 202

Slide 202 text

( pq.ppq ) xy = xxy

Slide 203

Slide 203 text

( pq.ppq ) xy = xxy ( ? ) xy = xxy

Slide 204

Slide 204 text

( pq.ppq ) xy = xxy ( ? ) xy = xxy

Slide 205

Slide 205 text

( pq.ppq ) xy = xxy M xy = xxy

Slide 206

Slide 206 text

( pq.ppq ) xy = xxy M xy = xxy

Slide 207

Slide 207 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq disjunction BEQ pq.p q (NOT q) equality

Slide 208

Slide 208 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 209

Slide 209 text

( ) pq.p( ) T T F F q q p => q => p(q(T)(F))(q(F)(T))

Slide 210

Slide 210 text

( ) pq.p( ) T T F F q q

Slide 211

Slide 211 text

( ) pq.p( ) T T F F q q

Slide 212

Slide 212 text

( ) pq.p( ) T T F F q q

Slide 213

Slide 213 text

( ) pq.p ( ) T T F F q q

Slide 214

Slide 214 text

( ) pq.p ( ) T T F F q q

Slide 215

Slide 215 text

( ) pq.p ( ) T T F F q q

Slide 216

Slide 216 text

( ) pq.p ( ) T T F F q q

Slide 217

Slide 217 text

( ) pq.p ( ) T T F F q q

Slide 218

Slide 218 text

( ) pq.p ( ) T T F F q q

Slide 219

Slide 219 text

( ) pq.p ( ) T T F F q q

Slide 220

Slide 220 text

( ) pq.p ( ) T T F F q q BOOLEAN EQUALITY

Slide 221

Slide 221 text

pq.p ( ) T F q q

Slide 222

Slide 222 text

( ) pq.p q NOT q

Slide 223

Slide 223 text

( ) pq.p q q NOT

Slide 224

Slide 224 text

( ) pq.p q q NOT p => q => p(q)(not(q))

Slide 225

Slide 225 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 226

Slide 226 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 227

Slide 227 text

(ONE OF) DE MORGAN'S LAWS ¬(P ∧ Q) = (¬P) ∨ (¬Q) BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) !(p && q) === (!p) || (!q)

Slide 228

Slide 228 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 229

Slide 229 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 230

Slide 230 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 231

Slide 231 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 232

Slide 232 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 233

Slide 233 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 234

Slide 234 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 235

Slide 235 text

BEQ (NOT (AND p q)) (OR (NOT p) (NOT q)) (xy.x y ((fab.fba) y)) ((fab.fba) ((xy.xyx) p q)) ((f.ff) ((fab.fba) p) ((fab.fba) q))

Slide 236

Slide 236 text

WHAT ELSE CAN WE INVENT? numbers arithmetic data structures type systems recursion Sorry… can't fit them all in today! See part II online

Slide 237

Slide 237 text

B C K I KI = K I = C K B1 = B B B Th = C I V = B C Th = B C (C I)

Slide 238

Slide 238 text

QUESTION how many combinators are needed to form a basis? 20? 10? 5?

Slide 239

Slide 239 text

STARLING · KESTREL S := abc.ac(bc) K := ab.a

Slide 240

Slide 240 text

THE SK COMBINATOR CALCULUS SK

Slide 241

Slide 241 text

THE SK COMBINATOR CALCULUS SKI

Slide 242

Slide 242 text

I = ?

Slide 243

Slide 243 text

I = S K K

Slide 244

Slide 244 text

I = S K K V = ?

Slide 245

Slide 245 text

I = S K K V = (S(K((S((S(K(( S(KS))K)))S))(KK)))) ((S(K(S((SK)K))))K)

Slide 246

Slide 246 text

BUT ACTUALLY… 1

Slide 247

Slide 247 text

IOTA ι := f.(f abc.ac(bc))ab.a I := ιι K := ι(ι(ιι)) S := ι(ι(ι(ιι)))

Slide 248

Slide 248 text

seriously though, why?

Slide 249

Slide 249 text

No content

Slide 250

Slide 250 text

No content

Slide 251

Slide 251 text

No content

Slide 252

Slide 252 text

No content

Slide 253

Slide 253 text

… ADDENDUM

Slide 254

Slide 254 text

COMBINATORS Sym. Bird -Calculus Use Haskell I Idiot a.a identity id M Mockingbird f.ff self-application (cannot define) K Kestrel ab.a true, first, const const KI Kite ab.b = KI = CK false, second const id C Cardinal fab.fba reverse arguments flip B Bluebird fga.f(ga) 1°←1° composition (.) Th Thrush af.fa = CI hold an argument flip id V Vireo abf.fab = BCT hold a pair of args flip . flip id B1 Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

Slide 255

Slide 255 text

CHURCH ENCODINGS: BOOLEANS Sym. Name -Calculus Use T TRUE ab.a = K = C(KI) encoding for true F FALSE ab.b = KI = CK encoding for false NOT p.pFT or C negation AND pq.pqF or pq.pqp conjunction OR pq.pTq or pq.ppq = M* disjunction BEQ pq.p q (NOT q) equality

Slide 256

Slide 256 text

CHURCH ENCODINGS: NUMERALS Sym. Name -Calculus Use N0 ZERO fa.a = F apply f no times to a N1 ONCE fa.f a = I* apply f once to a N2 TWICE fa.f (f a) apply 2-fold f to a N3 THRICE fa.f (f (f a)) apply 3-fold f to a N4 FOURFOLD fa.f (f (f (f a))) apply 4-fold f to a N5 FIVEFOLD fa.f (f (f (f (f a))))) apply 5-fold f to a

Slide 257

Slide 257 text

CHURCH ARITHMETIC Name -Calculus Use SUCC nf.B f (nf) = nfa.f(nfa) successor of n ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k MULT nkf.n(kf) = B multiplication of n and k POW nk.kn = Th raise n to the power of k PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier) SUB nk.k PRED n subtract k from n

Slide 258

Slide 258 text

CHURCH ARITHMETIC: BOOLEAN OPS Name -Calculus Use IS0 n.n (K F) T test if n = 0 LEQ nk.IS0 (SUB n k) test if n <= k EQ nk.AND (LEQ n k) (LEQ k n) test if n = k GT nk.B1 NOT LEQ test if n > k

Slide 259

Slide 259 text

CHURCH PAIRS Sym. Name -Calculus Use PAIR abf.fab = V pair two arguments FST p.pK extract first of pair SND p.p(KI) extract second of pair Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd SET1ST cp.PAIR c (SND p) set first, immutably SET2ND cp.PAIR (FST p) c set second, immutably

Slide 260

Slide 260 text

f.(x.f(xx))(x.f(xx)) THE Y FIXED-POINT COMBINATOR

Slide 261

Slide 261 text

f.(x.f(v.xxv))(x.f(v.xxv)) THE Z FIXED-POINT COMBINATOR

Slide 262

Slide 262 text

ADDITIONAL RESOURCES Combinator Birds · Rathman · http://bit.ly/2iudab9 To Mock a Mockingbird · Smullyan · http://amzn.to/2g9AlXl To Dissect a Mockingbird · Keenan · http://dkeenan.com/Lambda .:. A Tutorial Introduction to the Lambda Calculus · Rojas · http://bit.ly/1agRC97 Lambda Calculus · Wikipedia · http://bit.ly/1TsPkGn The Lambda Calculus · Stanford · http://stanford.io/2vtg8hp .:. History of Lambda-calculus and Combinatory Logic Cardone, Hindley · http://bit.ly/2wCxv4k .:. An Introduction to Functional Programming through Lambda Calculus · Michaelson · http://amzn.to/2vtts56