Slide 80
Slide 80 text
Introduction
Neural Networks
Deep Learning Approach 1
Deep Learning Approach 2
Auto-Encoders
Stacked Auto-Encoders
Denoising Auto-Encoders and Variants
Le, Q., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and
Ng, A. (2011).
On optimization methods for deep learning.
In Getoor, L. and Scheffer, T., editors, Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
ICML ’11, pages 265–272, New York, NY, USA. ACM.
Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K.,
Corrado, G. S., Dean, J., and Ng, A. Y. (2012).
Building high-level features using large scale unsupervised
learning.
In ICML.
Lee, H., Grosse, R., Ranganath, R., and Ng, A. (2009).
Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations.
In ICML.
43/43