Slide 26
Slide 26 text
ࢀߟจݙ
1. CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Anomaly detecCon: A survey. ACM compuCng surveys
(CSUR), 2009, 41.3: 15.
2. KITAGAWA, G. Introducing to Time Series Modeling, Chapman & Hall. 2010.
3. HOCHENBAUM, Jordan; VALLIS, Owen S.; KEJARIWAL, Arun. AutomaCc anomaly detecCon in the cloud via
staCsCcal learning. arXiv preprint arXiv:1704.07706, 2017.
4. ISLAM, Md Rafiqul, et al. A Comprehensive Survey of Time Series Anomaly DetecCon in Online Social Network
Data. InternaConal Journal of Computer ApplicaCons, 2017, 180.3: 13-22.
5. HARVEY, Andrew C.; PETERS, Simon. EsCmaCon procedures for structural Cme series models. Journal of
ForecasCng, 1990, 9.2: 89-108.
6. LAPTEV, Nikolay, et al. Time-series extreme event forecasCng with neural networks at uber. In: InternaConal
Conference on Machine Learning. 2017. p. 1-5.
7. TAYLOR, Sean J.; LETHAM, Benjamin. ForecasCng at scale. The American StaCsCcian, 2018, 72.1: 37-45.
Web System Architecture ݚڀձ (2018/11/17) | Yoshikawa Ryota ( @rrreeeyyy ) 26