Slide 1

Slide 1 text

:PTIJIJTB*+*3* ੜ੒"*ͷ࣮༻ʹ޲͚ͯ "*EFW$7- EJSFDUPS -*/&$PSQPSBUJPO

Slide 2

Slide 2 text

:PTIJIJTB*KJSJ 1I% -*/&גࣜձࣾ σʔλαΠΤϯεηϯλʔ "*%FWࣨ ࣨ௕ɺ$7-Ϛωʔδϟʔ > ઐ໳ɿίϯϐϡʔλϏδϣϯɾϩϘςΟΫεɺͦΕΒΛࢧ͑Δػցֶश > झຯɿ > 0VUEPPSొࢁɾεΩʔɾୌ८ΓɾࣸਅࡱӨɾόΠΫτϥΠΞϧɾɾɾ > *OEPPSϐΞϊԋ૗ɾྺ࢙ɾᗉ੡ɾίʔώʔᖿઝɾञΛᅂΉ > ೥ΦϜϩϯೖࣾ > إͷݕग़ೝࣝͷσδΧϝɾܞଳి࿩ɺ؂ࢹΧϝϥԠ༻ > ෺ମݕग़ɾŤŞƄŸƃũŖŢŔƃɾ0$3ͷ'"޲͚঎඼Խ > ͠ͳ΍͔ͳ੍ޚΛ࣮ݱ͢Δࣗ཯ιϑτϩϘοτݚڀਪਐ > Ϧαʔνϕϯνϟʔ্ཱͪ͛ 0.30/4*/*$9 > ೥-*/&ೖࣾ > $PNQVUFS7JTJPO-BCͷ্ཱͪ͛ɺ"*։ൃࣨͷ૊৫Խ

Slide 3

Slide 3 text

ຊ೔ͷߨԋͷ಺༰ • ੜ੒"*ͱͦͷՄೳੑ • -*/&Ͱͷ"* • ͜Ε͔Βͷ"*ͱͦΕʹΑΓݟ͑ͯ͘ΔՄೳੑ

Slide 4

Slide 4 text

ຊ೔ͷߨԋͷ಺༰ • ੜ੒"*ͱͦͷՄೳੑ • -*/&Ͱͷ"* • ͜Ε͔Βͷ"*ͱͦΕʹΑΓݟ͑ͯ͘ΔՄೳੑ

Slide 5

Slide 5 text

ʮਪ࿦ʯͷࣗಈԽͷਐల  ػցֶशϕʔε `T ϧʔϧϕʔε ؍࡯΍஌ݟΛݩʹ ౷ܭϞσϧߏங σʔλ͔Β ༧ଌϞσϧΛ௚઀ֶश ը૾ɾݴޠͳͲ ଟ࣍ݩσʔλΛѻ͍ͮΒ͘௿ਫ਼౓ ղऍੑɾઆ໌ੑ͕௿͘ ܭࢉ͕๲େ ղऍੑɾઆ໌ੑ͕ߴ͘ ܭࢉ΋গͳΊ ը૾ɾݴޠͳͲ ଟ࣍ݩσʔλ͕ѻ͑ߴਫ਼౓ *GUIFOϧʔϧ ϕΠζ౷ܭ χϡʔϥϧωοτϫʔΫ ಛ௃ ܽ఺ ར఺ ୅දख๏ WT

Slide 6

Slide 6 text

"*ֵ໋ɿػց͕ʮਪ࿦ʯͰਓΛ௒͑Δ࣌୅ $IBU(15 ήʔϜʢғޟʣͷੈքͰ ਓΛ௒͑ͨʂ ʮݴޠʯʮࢥߟʯͳͲʮੜ੒ʯͰ ਓΛ௒͑ͭͭ͋Δʁ ๲େͳعේσʔλͰֶश 8FC্ͷ๲େͳ஌ࣝ ίϯϐϡʔλಉ࢜Ͱରઓ͠ ࣗ཯ֶश ਓͷϑΟʔυόοΫͰֶश "MQIB(P ܭࢉػਐԽ

Slide 7

Slide 7 text

ͩΕ΋ѻ͑Δʮݴޠʯʮը૾ʯΛೖྗ͠ ͩΕ΋͕Θ͔Δʮݴޠʯ΍ʮը૾ʯɾʮԻ੠ʯͱ͍͏ܗͰग़ྗͰ͖Δ "* ੜ੒"*ͱ͸ʁ 7 "* ਓ͕͍ͯ͠Δ࡞ۀʹ ͍͍ۙͮͯΔ

Slide 8

Slide 8 text

ͩΕ΋ѻ͑Δʮݴޠʯʮը૾ʯΛೖྗ͠ ೝࣝ݁Ռɾ൑ఆ݁ՌΛग़ྗ ैདྷͷ"* 8 "* ਓ͕͍ͯ͠Δ࡞ۀʹ ͍͍ۙͮͯΔ :FT/P.BZCF ΫϥεϥϕϧͳͲ جຊతʹ࣍ݩͷग़ྗ

Slide 9

Slide 9 text

ドメインを選ばない⼤量データで学習させた多⽬的なモデル ⽣成AIを可能とする基盤モデル υ ϝ Π ϯ λεΫ λεΫಛԽܕ"* λεΫಛԽܕ"* ج൫Ϟσϧ

Slide 10

Slide 10 text

ج൫Ϟσϧʢ'PVOEBUJPONPEFMʣʹΑΔ൚༻Խ XFC ,OPX MFEHF CBTF 1VSDIBTF SFDPSE 1VSDIBTF SFDPSE 5SBOT BDUJPO SFDPSE 4QFFDI EPDT "E CBOOFS 4UJDLFS 4FBSDI 2" 4IPQQJOH FYQFSJFODF DIBUCPU $POW X TUJDLFST 4$. %JBMPHVF 0$3 "E PQUJNJ[F ʜ ʜ 4FBSDI NPEFM 2" NPEFM 3FDPN .PEFM %JBMPHVF .PEFM %FNBOE 1SFE NPEFM 4QFFDI 3FDPH NPEFM 0$3 NPEFM &GGFDU 1SFE NPEFM 4UJDLFS 3FDPN NPEFM ʜ ϚϧνυϝΠϯσʔλ 4FBSDI 2" ʜ 0$3 "E PQUJNJ[F ʜ 0OFNPEFM 'PVOEBUJPONPEFM ೖ ྗ ޙ ஈ λ ε Ϋ ॲ ཧ ैདྷ λεΫຖʹϞσϧߏஙɺܾΊͨλεΫͷΈʹར༻ ج൫Ϟσϧ υϝΠϯλεΫʹґଘͤͣ࢖͑Δ ͭͷٕज़ֵ৽

Slide 11

Slide 11 text

୯७ʹ"UUFOUJPO ''/ϨΠϠʔΛॏͶΔ͚ͩͰਫ਼౓্͕͕Δʂ ͦΕ·Ͱ͸3//΍-45.ͳͲͰ૚͝ͱʹ޻෉͕ඞཁ ̍ͭ໨ͷٕज़ֵ৽ɿߏ଄ͷ୯७Խʢ5SBOTGPSNFSʢʣʣ Ϟσϧߏ଄ΤϯδχΞϦϯάͰͷ ࠩҟԽͷऴᖼʁ ͨͩ͠ɺ·ͩγϯάϧλεΫϞσϧ ·ͩ·ͩ൚༻Խ͕ඞཁͳঢ়گͩͬͨ ൚༻Խʹ޲͚ͯͷ՝୊͸ ֶश͢Δσʔλྔ ʴ ͦͷͨΊͷΞϊςʔγϣϯ

Slide 12

Slide 12 text

̎ͭ໨ͷٕज़ֵ৽ɿڭࢣͳ͠ࣄલֶश #&35 (15  Inclusive multi-modal data Search QA … OCR Ad optimize … Pre-trained model Small data Fine tuning GT XFC ,OPX MFEHF CBTF 1VSDIBTF SFDPSE 1VSDIBTF SFDPSE 5SBOT BDUJPO SFDPSE 4QFFDI EPDT "E CBOOFS 4UJDLFS 4FBSDI 2" 4IPQQJOH FYQFSJFODF DIBUCPU $POW X TUJDLFST 4$. %JBMPHVF 0$3 "E PQUJNJ[F ʜ ʜ 4FBSDI NPEFM 2" NPEFM 3FDPN .PEFM %JBMPHVF .PEFM %FNBOE 1SFE NPEFM 4QFFDI 3FDPH NPEFM 0$3 NPEFM &GGFDU 1SFE NPEFM 4UJDLFS 3FDPN NPEFM ʜ ೖ ྗ ޙ ஈ λ ε Ϋ ॲ ཧ ैདྷ ैདྷ͸λεΫ͝ͱʹೖྗͱਖ਼ղ͕ඞཁ ڭࢣͳ͠ࣄલֶश ਖ਼ղ͕ཁΒͳֶ͍शํ๏

Slide 13

Slide 13 text

݀ຒΊ໰୊ͱ઀ଓ໰୊Λɺʢ΄΅ʣແݶʹ࡞Γग़͠ɺֶशͤ͞Δʢࣗݾڭࢣֶशʣ #&35ͰఏҊ͞Εͨɺڭࢣͳ͠ࣄલֶशͷΠϝʔδ ੨ۭจݿʮۜՏమಓͷ໷ʯΑΓ

Slide 14

Slide 14 text

ハハ 積もれば 価格 が ⼭となる 塵も積もれば ⽂脈 次に来る⾔葉 ? ⾔語モデルとは、与えられた⽂章の次に来る⾔葉を当てるよう学習させたAIモデル その性能を最⼤限引き出すため、モデルサイズ(パラメータ)を10億以上に拡⼤ #&35ͰఏҊ͞Εͨɺڭࢣͳ͠ࣄલֶशͷΠϝʔδ ͜ΕΛݴޠੜ੒ʹԠ༻͢Δͱɾɾɾʢ(15ʣ

Slide 15

Slide 15 text

4DBMJOH-BXT<,BQMBO BS9JW >ʹΑΕ͹ɺσʔληοτ΍ύϥϝʔλΛେ͖͘͢Ε͹ͲΜͲΜਫ਼౓͕ྑ͘ͳΔʂ εέʔϦϯά๏ଇ Kaplan+, Scaling Laws for Neural Language Models, arXiv 2020より抜粋

Slide 16

Slide 16 text

େن໛ݴޠϞσϧͷ։ൃڝ૪ ։ൃݩ ΞϧΰϦζϜ ύϥϝʔλ਺ ݴޠ 0QFO"* (15 3BEGPSE  . &OHMJTI (15 3BEGPSE  # &OHMJTI (15 #SPXO  # &OHMJTI (PPHMF #&35 %FWMJO  # &OHMJTI NBOZ+1WBSJBOUTBWBJMBCMF 5 3BGGFM 9VF  # &OHMJTI 4XJUDI5SBOTGPSNFS 'FEVT  # MBOHVBHFT 1B-.  .JDSPTPGU .5/-(  # &OHMJTI -*/& )ZQFS$-07" ,JN  d# # +BQBOFTF /"7&3 )ZQFS$-07" ,JN  d# # ,PSFBO .FUB 015 # &OHMJTI

Slide 17

Slide 17 text

̎ͭ໨ͷٕज़ֵ৽ɿڭࢣͳ͠ࣄલֶश #&35 (15  Inclusive multi-modal data Search QA … OCR Ad optimize … Pre-trained model Small data Fine tuning GT ڭࢣͳ͠ࣄલֶश ਖ਼ղ͕ཁΒͳֶ͍शํ๏ λεΫదԠͷͨΊͷ ϑΝΠϯνϡʔχϯά͕ඞཁ

Slide 18

Slide 18 text

େن໛ͳࣄલֶशϞσϧʹλεΫࢦࣔ͢Δ͜ͱͰɺଟ͘ͷλεΫΛ௥Ճֶशͳ࣮͘ݱͰ͖Δ͜ͱ͕ൃݟ͞Εͨʂ ̏ͭ໨ͷٕज़ֵ৽ɿϓϩϯϓςΟϯά (15  ೖ ྗ ޙ ஈ λ ε Ϋ ॲ ཧ *ODMVTJWFNVMUJNPEBMEBUB 4FBSDI 2" ʜ 0$3 "E PQUJNJ[F ʜ 1SFUSBJOFE 'PVOEBUJPONPEFM 'FXTIPUQSPNQUGPSUBTLTQFDJGJDBUJPO *ODMVTJWF NVMUJNPEBMEBUB 4FBSDI 2" ʜ 0$3 "E PQUJNJ[F ʜ 1SFUSBJOFE NPEFM 4NBMMEBUB 'JOF UVOJOH (5 ैདྷ λεΫ͝ͱͷϑΝΠϯνϡʔχϯά͕ඞཁ ϓϩϯϓςΟϯά λεΫࢦࣔͰԿͰ΋Ͱ͖Δʂ

Slide 19

Slide 19 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065 λεΫ એݴ

Slide 20

Slide 20 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065 ྫ

Slide 21

Slide 21 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065 ྫ

Slide 22

Slide 22 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065 ຊ୊

Slide 23

Slide 23 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065ീ݄ͷ೤͍࠭ͷத΁खΛೖΕΔ

Slide 24

Slide 24 text

ϓϩϯϓςΟϯάͷ6* ղઆ͔Βആ۟Λੜ੒͠·͢ɻ */͕֝ݹ͍஑ʹඈͼࠐΜͩ࣌ͷԻͷ༷ࢠΛӵΜͩ۟Ͱ͢ɻ͕֝஑ʹඈͼࠐΉԻΛදݱͨ͠୯७ͳ۟ Ͱ͸͋Γ·͕͢ɺपғͷ੩ऐ΍ऐΕͨݹ஑ͷ༷ࢠɺ͕֝஑ʹඈͼࠐΉੜͷ༂ಈͷΑ͏ͳ৘ܠ͕·͟ ·͟ͱ఻Θͬͯ͘Δɺझͷ͋Δ۟ͱͳ͍ͬͯ·͢ɻ͜ͷ۟ͷقޠ͸ʰ֝ʱͰɺ͜Ε͸य़Λදݱͯ͠ ͍ΔقޠͰ͢ɻ 065ݹ஑΍֝ඈ͜Ήਫͷ͓ͱ */ࢁܗݝʹ͋ΔཱੴࣉʢΓͬ͠Ό͘͡ʣͰηϛ͕໐͍͍ͯΔ༷ࢠΛӵ·Εͨ۟Ͱ͢ɻ͜ͷ۟͸໌֬ ͳ۟༁͸Θ͔͍ͬͯͳ͍ͷͰɺগ͠ϛεςϦΞεͰӵΈղ͘͜ͱʹϩϚϯ͕͋Δആ۟Ͱ͢ɻʮؓ ͞ʯͱʮઊͷ੠ʯͱ͍͏Ұݟໃ६͢Δදݱͷҙਤ͕ಛʹߟ͑ͤ͞ΒΕ·͢Ͷɻ 065ؓ͞΍ؠʹ͠Έೖઊͷ੠ */݄຤ͷॵ͍೔ͷޕޙͷձٞʹͱͯ΋૖େͳγεςϜ։ൃͷ࿩Λ͠Α͏ͱ͍ͯ͠Δ༷ࢠΛӵ·Ε ͨ۟Ͱ͢ɻ୯७ͳ۟Ͱ͸͋Γ·͕͢ɺαϥϦʔϚϯͳΤϯδχΞ͕༷ʑͳݒ೦͕͋ΔதͰɺͦΕͰ ΋͜ͷٕज़Λܗʹ͢Δ͜ͱͰਓ޻஌ೳٕज़ͷະདྷΛ։͖͍ͨͱ͍͏ر๬Λ͜Ίͨؾ࣋ͪΛදݱͯ͠ ͍Δɻ 065༦ম΍ϓϩδΣΫτԌ্ͤΓ

Slide 25

Slide 25 text

ϓϩϯϓςΟϯάʹΑΔ঎඼આ໌จͷੜ੒

Slide 26

Slide 26 text

%#ͷεέʔϧ֦ு΋ॏཁ͕ͩɺਓͷհࡏ΋ॏཁͰ͋Δ͜ͱ͕ঃʑʹ൑໌ "*Λ͞ΒʹҭͯΔʂ 26 5-%3EBUBTFU  SFEEJUDPNΑΓసࡌ .BTLFEMBOHVBHFNPEFMMJOH 

Slide 27

Slide 27 text

࣌୅ʹٯߦ͢ΔΑ͏͕ͩɺڭࢣ͋ΓֶशΛ࢖ͬͯϑΝΠϯνϡʔχϯά͢Δ "*ΛҭͯΔ  'JOFUVOFEMBOHVBHFNPEFMTBSF[FSPTIPUMFBSOFST<8FJ *$-3>ΑΓసࡌ

Slide 28

Slide 28 text

Ұ෦ͷύϥϝʔλͷΈϑΝΠϯνϡʔχϯά "*ΛҭͯΔ 28 -P3"5SBOTGPSNFSͷ֤ϨΠϠʹ͓͍ͯɺ"EBQUPSNPEVMF ΛCZQBTTͤ͞ɺͦΕΛUVOJOH͢Δ͜ͱͰগ਺σʔλͰ΋աద ߹ͳ͘ɺ͔ͭޮ཰Α͘దԠͤ͞ΒΕΔख๏ )V -03"-083"/,"%"15"5*0/0'-"3(&-"/(6"(& .0%&-4 *$-3 ΑΓసࡌ

Slide 29

Slide 29 text

ਓͷհࡏΛ͏·͘׆༻Ͱ͖ΔֶशΞϧΰϦζϜͱͯ͠ͷ3- "*ΛҭͯΔ • ใुؔ਺Λਓͷ؆୯ͳϑΟʔυόοΫʹ ج͍ͮͯϑΟοςΟϯά • ݁Ռతʹେྔͷσʔλʹεέʔϧͤ͞Δ ͜ͱ͕Մೳ • ͜ΕʹΑΓෳࡶͳใुؔ਺΋දݱͰ͖Δ • ใु੒ܗʢSFXBSETIBQJOHʣͷҰͭͱߟ ͑ΒΕ͍ͯΔɻ • ౰࣌͸ɺ"$ 5310ͳͲͷڧԽֶशΛ༻ ͍ͯɺϩϘςΟΫεͱήʔϜͷλεΫʹ ׆༻  %FFQSFJOGPSDFNFOUMFBSOJOHGSPNIVNBOQSFGFSFODFT<$ISJTUJBOP BS9JW>ΑΓసࡌ

Slide 30

Slide 30 text

*OTUSVDU(15 <0VZBO .BS> 5SBJOJOHMBOHVBHFNPEFMTUPGPMMPXJOTUSVDUJPOTXJUIIVNBOGFFECBDL<0VZBOH >ΑΓసࡌ

Slide 31

Slide 31 text

ͦΕͧΕͷεςοϓʹඞཁͳσʔλྔ *OTUSVDU(15 <0VZBO .BS> 31 4VQFSWJTFEGJOFUVOJOH 3FXBSENPEFM 3-XJUI )VNBO'FFECBDL ,QSPNQUT IVNBOMBCFMFS ,QSPNQUT IVNBOMBCFMFS ,QSPNQUT

Slide 32

Slide 32 text

"#ςετܗࣜͰධՁͤ͞Δ͜ͱͰɺ3-)'༻ͷ৽ͨͳֶशσʔλΛूΊΔ )VNBOBOOPUBUJPOͷ6* 32

Slide 33

Slide 33 text

$IBU(15 ਓͷ໛ൣճ౴Λֶश͠ɺैདྷΑΓ΋๬·͍͠ճ౴͕Ͱ͖Δ 33 (15 検索 質問回答 … 推薦 対話 … Foundation model ؒҧͬͨ͜ͱΛ ಊʑͱ౴͑Δ ภݟ͕໰୊ൃݴ͕ ؚ·ΕΔճ౴Λ͢Δ $IBU(15 Tuned model ࣭໰ճ౴ ճ౴ධՁ ਓͷ࣭໰ճ౴΍ճ౴ධՁʹج͖ͮɺϞσϧΛ͞Βʹ܇࿅ ͢Δ͜ͱͰɺ๬·͍͠ճ౴ΛಘΒΕΔΑ͏ʹͨ͠ ճ౴ਫ਼౓͕޲্ ෆద੾ճ౴ͷ௿ݮ ݴ͍ճ͠ɾදݱͷվળ %FFQTQFFE .JDSPTPGU ͳͲͰ࣮૷ɿ IUUQTXXXBYJPO[POFEFFQTQFFEFYUSFNFTDBMFNPEFMUSBJOJOHGPSFWFSZPOF

Slide 34

Slide 34 text

ࢹ֮৘ใͱݴޠ৘ใΛೖྗͱͯ͠ɺݴޠΛग़ྗɻਤදೖͷࢼݧ໰୊Ͱ΋ߴಘ఺Λ࣮ݱ (15 $IBU(15 QMVT 34

Slide 35

Slide 35 text

ΞϝϦΧͷ༷ʑͳࢼݧͰɺਓؒͷ্Ґͷ੒੷Λ࢒͍ͯ͠Δ "*ͷ࣮ྗɿςΩετϕʔεͰ͸طʹਓؒΛ௒͑ͭͭ͋Δ 35        6OJGPSN#BS&YBN ౷Ұ࢘๏ࢼݧ 4"53FBEJOH8SJUJOH େֶਐֶదੑࢼݧ ϦʔσΟϯά ˍϥΠςΟϯά 4"5.BUI େֶਐֶదੑࢼݧ ਺ֶ (3&2VBOUJUBUJWF େֶӃڞ௨ࢼݧ ਺ֶ (3&7FSCBM େֶӃڞ௨ࢼݧ ݴޠ QFSDFOUJMF

Slide 36

Slide 36 text

ਓؒͰ͸͙͢ʹ࡞Εͳ͍จষΛॻ͚Δ "*ͷ࣮ྗɿςΩετϕʔεͰ͸طʹਓؒΛ௒͑ͭͭ͋Δ

Slide 37

Slide 37 text

แׅతͳϞσϧͱͦΕʹΑΔଟ༷ͳʢແݶͷʁʣλεΫͷ࣮ݱɺ͜ΕʹΑΓਓΛ௒͑ΒΕ ΔՄೳੑ͕ग़͖ͯͨʂ ج൫Ϟσϧ͕ࣔࠦ͢Δ͜ͱ υ ϝ Π ϯ λεΫ λεΫಛԽܕ"* λεΫಛԽܕ"* ج൫Ϟσϧ ͜ ͷ ෯ ͕ ڭ ࢣ ͳ ͠ ࣄ લ ֶ श Ͱ Մ ೳ ʹ ϓϩϯϓςΟϯά ڭ ࢣ ͳ ͠ ࣄ લ ֶ श ࣗ ݾ ڭ ࢣ ֶ श

Slide 38

Slide 38 text

%"--&<3BNFTI BS9JW > $-*1<3BEGPSE BS9JW > ϚϧνϞʔμϧͳੜ੒ 38 3BEGPSE -FBSOJOH5SBOTGFSBCMF7JTVBM.PEFMT'SPN/BUVSBM-BOHVBHF4VQFSWJTJPO BS9JW  3BNFTI )JFSBSDIJDBM5FYU$POEJUJPOBM*NBHF(FOFSBUJPOXJUI$-*1-BUFOUT BS9JW ΑΓసࡌ 画像と、テキストのエンコーディングの対から、対象学習を⾏うことで、双⽅の共通の埋め込み空間を学習

Slide 39

Slide 39 text

௿࣍ݩۭؒͰ %JGGVTJPONPEFMΛֶशਪ࿦͢Δ͜ͱͰɺলϦιʔε͔ͭߴ଎ͳֶशਪ࿦͕Մೳ 4UBCMFEJGGVTJPO<3PNCBDI "QS> 359 (#ϏσΦϝϞϦʔ Ҏ্ఔ౓ͷ(16͕͋Ε͹ࣗ୐Ͱ΋ಈ͔͢͜ͱ͕Ͱ͖ΔΑ͏ʹ ͳͬͨ IUUQTBSYJWPSHBCTΑΓసࡌ ίʔυɿ IUUQTHJUIVCDPN$PNQ7JTTUBCMFEJGGVTJPO IUUQTIVHHJOHGBDFDPTQBDFTTUBCJMJUZBJTUBCMFEJGGVTJPO

Slide 40

Slide 40 text

ੜ੒͞ΕΔը૾͕ಉ͡ʹͳΔΑ͏ʹɺೖྗจࣈྻͷ&NCFEEJOHΛ࠷దԽ ৽ͨͳʮ࡞෩ʯΛ֮͑ͤ͞Δɿ5FYUVSBMJOWFSTJPO<(BM > (BM "O*NBHFJT8PSUI 0OF8PSE1FSTPOBMJ[JOH5FYUUP*NBHF(FOFSBUJPOVTJOH5FYUVBM*OWFSTJPO BS9JW ΑΓసࡌ

Slide 41

Slide 41 text

ͨͬͨ਺ຕͷը૾Ͱաద߹͢Δ͜ͱͳ͘ϑΝΠϯνϡʔχϯάɺࣗݾੜ੒ͨ͠αϯϓϧΛ༻͍Δ͜ͱ Ͱաֶशͱ֓೦γϑτΛ๷ࢭ ৽ͨͳର৅Λ֮͑ͤ͞Δɿ%SFBN#PPUI <3VJ[ "VH> IUUQTBSYJWPSHBCT ΑΓసࡌ ίʔυɿ IUUQTHJUIVCDPNTNZESFBNCPPUIHVJ

Slide 42

Slide 42 text

গ਺ͷը૾Ͱաద߹͢Δ͜ͱͳ͘ϑΝΠϯνϡʔχϯά ͞·͟·ͳը૾ϓϩϯϓτͷ׆༻ɿ$POUSPM/FU<;IBOH > 42 基本的な考え⽅はLoRAなどに使われるAdaptorと同 じ考え⽅、0で初期化するZeroConvが特徴的 Zhang+, Adding Conditional Control to Text-to-Image Diffusion Models, arXiv, 2023より転載

Slide 43

Slide 43 text

'MBNJOHP<"MBZSBD BS9JW > ϚϧνϞʔμϧ"*ʹ͓͚ΔϓϩϯϓςΟϯά "MBZSBD 'MBNJOHPB7JTVBM-BOHVBHF.PEFMGPS'FX4IPU-FBSOJOH BS9JW  ը૾ɾςΩετͷฒͼ͔Βɺ࣍ͷฒͼΛ༧ଌ͢ΔֶशΛ ͓ͯ͘͜͠ͱͰ৽ͨͳೖྗʹର͢Δద੾ͳ౴͑Λਪ࿦

Slide 44

Slide 44 text

(BUPBHFOFSBMJTUBHFOU<3FFE BS9JW > ͞ΒʹϚϧνϞʔμϧʹɾɾɾ 44 3FFE "(FOFSBMJTU"HFOU BS9JW ΑΓసࡌ ೚ҙͷλεΫʹ͓͚Δ؍ଌͱΞΫγϣϯͷܥྻΛਖ਼نԽ͠τʔΫϯԽͯ͠ɺݴޠͱಉ͡Α͏ʹ༩͑ɺ 5SBOTGPSNFSߏ଄ͷϞσϧʹ͓͍ͯɺ࣍ͷτʔΫϯΛ༧ଌ͢ΔΑ͏ֶश

Slide 45

Slide 45 text

ྫɿࣸਅͷͲ͕͓͔͍͔͜͠Λཧղ͠ݴޠԽ ը૾Λཧղɾղऍ͢ΔೳྗͰ΋ਓʹฒΜͩʁ 45

Slide 46

Slide 46 text

ྫɿྫྷଂݿͷத਎ͷࣸਅΛݩʹɺͦΕΒͰԿ͕࡞ΕΔ͔Λਪન ը૾Λཧղɾղऍ͢ΔೳྗͰ΋ਓʹฒΜͩʁ 46

Slide 47

Slide 47 text

47 ྫɿςΩετͷࢦࣔΛཧղͯ͠ɺෳࡶͳΠϥετΛੜ੒ -BTDPBJ ը૾Λඳ͘ೳྗͰ΋ਓʹฒΜͩʁ

Slide 48

Slide 48 text

ಛఆͷϞμϦςΟ͔ΒϚϧνϞʔμϧ΁ɻͦΕʹ൐͍ͲΜͳλεΫ͕ߟ͑ΒΕΔ͔ʁ ͲΜͲΜͱυϝΠϯͱλεΫ͸޿͕Δɾɾ λεΫ ϓϩϯϓςΟϯά ڭ ࢣ ͳ ͠ ࣄ લ ֶ श ࣗ ݾ ڭ ࢣ ֶ श υ ϝ Π ϯ ϚϧνϞʔμϧԽ Ϛ ϧ ν Ϟ ồ μ ϧ Խ

Slide 49

Slide 49 text

൚༻ਓ޻஌ೳ "(*BSUJGJDJBMHFOFSBMJOUFMMJHFODF  <(VCSVE > 49 "(* ਓؒϨϕϧͷ൚༻తͳ஌ೳ ঢ়گมԽʹରͯ͠ॊೈ /BSSPX"* ಛఆͷػೳɾঢ়گΛ૝ఆ͠ σʔλʹ࠷దԽͨ͠ػց ϓϩάϥϜͨ͠Ҏ্ͷ͜ͱ͕Ͱ͖Δɻ ಺ૠతʹߟ͍͑ͯΔ͕ɺͦͷൣғ͕ਓஐ Λ௒͍͑ͯΔ ڭ͑ͨ͜ͱ͔͠΍Βͳ͍ɻ ڭ͍͑ͯͳ͍͜ͱ͸Ͱ͖ͳ͍ɻ ਓͷΑ͏ʹҰͭͷ಄೴Ͱঢ়گʹ߹Θ͍ͤͯΖ͍Ζͳग़ྗ͕Մೳ

Slide 50

Slide 50 text

ੜ੒"*ͷ༻్Ձ஋͸ओʹछྨ 50 ޮ཰Խ ίϯςϯπੜ੒ ύʔιφϧԽ

Slide 51

Slide 51 text

ੜ੒ܕݕࡧɺݕࡧ݁ՌΛҰͭͣͭग़͢ͷͰ͸ͳ͘ɺ·ͱΊͨϨϙʔτΛදࣔ ৽ͨͳݕࡧύϥμΠϜ 51 .JDSPTPGU#JOH &EHF ੜ੒ܕݕࡧ ޮ཰Խ

Slide 52

Slide 52 text

$FSUBJOMZɿΧελϚʔαʔϏεͷࣗಈԽ ⼈⼒によるカスタマーサービスを代替 52 ޮ཰Խ

Slide 53

Slide 53 text

.JDSPTPGUɿϩϘοτͷ੍ޚίʔυ࡞੒ͷࣗಈԽ ςΩετͰࢦࣔΛग़ͤ͹ɺੜ੒"*͕ࣗಈͰίʔυʹม׵ 53 ޮ཰Խ

Slide 54

Slide 54 text

-*/&ɿ޿ࠂίϐʔ࡞੒ͷࣗಈԽ ਓྗ࡞ۀͷࣗಈԽʹΑΓੜ࢈ੑΛେ͖͘վળ 54 ίϯςϯπ ੜ੒

Slide 55

Slide 55 text

ը૾ʴΩϟονίϐʔʴϨΠΞ΢τͷੜ੒ʹΑΔ޿ࠂແݶੜ੒ ి௨ɿ޿ࠂੜ੒΁ͷԠ༻  Φ Ϧ Τ ϯ ೖ ྗ ి௨ใΑΓసࡌ IUUQTEFOUTVIPDPNBSUJDMFT ੜ ੒ ύ ϥ ϝ ồ λ ग़ ྗ Ϩ Π Ξ ΢ τ ੜ ੒ Ω Ỿ ỽ ν ੜ ੒ ը ૾ ੜ ੒ ޮ Ռ ༧ ଌ ίϯςϯπ ੜ੒

Slide 56

Slide 56 text

NJHOɿݐஙઃܭۀ຿ͷޮ཰Խ 56 キーワードや写真をインプット ⽣成AIがデザインイメージをアウトプット ίϯςϯπ ੜ੒ “リビング“ +

Slide 57

Slide 57 text

&YQFEJBɿཱྀఔܾఆΛαϙʔτ ཱྀߦʹؔ͢Δ࣭໰ʹ౴͑Δ͜ͱͰɺސ٬ຬ଍౓ͱച্Λ޲্ 57 ύʔιφϧԽ

Slide 58

Slide 58 text

ੜ੒"*ͷԠ༻Ωϟϯόε ΤϯλʔςΠϯϝϯ τ ϚʔέςΟϯά Πϯλʔωοτ ڭҭ ҩྍ෱ࢱ ϑΝογϣϯɾσβ Πϯ Ұൠۀ຿ ޮ ཰ Խ ৘ใݕࡧ ը૾ɾԻָݕࡧ ৘ใਪનɺ޿ࠂ഑৴ ݕࡧɺϨϙʔςΟϯ άɺཱྀߦܦ࿏ɾҿ৯ ళɾߪങఏҊ ڭࡐࢧԉɺ"*νϡʔ λʔͳͲ ݸਓϨϕϧͰͷॳظ ਍அࢧԉ ίʔσΟϯάࢧԉ ৘ใՃ޻ ฤۂɺ੾Γൈ͖ಈը ੜ੒ɺτϨΠϥʔੜ ੒ ৘ใΩϡϨʔγϣϯ จॻɾϝʔϧ౳࡞੒ ࢧԉɾਤද࡞੒ ίϛϡχέʔ γϣϯ ΧελϚʔαϙʔτɺ νϟοτϘοτ ձ࿩ࢧԉ จॻɾϝʔϧ౳࡞੒ ࢧԉ ΧελϚʔαϙʔτ ί ϯ ς ϯ π ੜ ੒ ίϯςϯπੜ੒ өըɾ57٭ຊੜ੒ɺ ಈըɾָۂੜ੒ɺ࡞ ࢺ࡞ۂࢧԉɺήʔϜ ΩϟϥΫλʔɾγφ ϦΦੜ੒ɺΞχϝੜ ੒ ঎඼ɾ޿ࠂจͷੜ੒ɺ ޿ࠂੜ੒αΠτ࡞੒ɺ ϒϩάɾ4/4هࣄੜ ੒ɺ αΠτੜ੒ɺϒϩ άɾ4/4هࣄੜ੒ɺ ֶशίϯςϯπੜ੒ σβΠϯҊੜ੒ɺ"* Ϟσϧੜ੒ Πϥετ࡞੒ɺϏδ ωεઓཱུҊɾΞΠ σΟΤʔγϣϯࢧԉɺ ύ ồ ι φ ϧ Խ ਪનɾ൑அࢧԉ ύʔιφϥΠζϓϨ ΠϦετ ޿ࠂ৹ࠪࣗಈԽ ޿ࠂޮՌ࠷దԽɿૌ ٻϙΠϯτɾλʔ ήοτ౳ೖΕΕ͹ɺ ഔମɾΫϦΤΠςΟ ϒؚΊਪન 5SJQΞγετɿཱྀఔ ߏஙˍ༧໿ ࠾఺ɾධՁࢧԉ ڭҭϓϩάϥϜߏ ஙɿڭࡐબఆɾ೉қ ౓બఆɾɾɾ ਍அࢧԉ ݈߁ɾάϧϝΞγε τɿݙཱˍ഑ୡ༧໿ɺ ӡಈϝχϡʔߏங όʔνϟϧτϥΠϯ Φϯɺίʔσਪન ཁ໿ɺςετࢧԉ ϨϙʔςΟϯά τϨϯυϨϙʔτ ·ͱΊهࣄੜ੒ ใࠂॻ࡞੒ࢧԉ ใࠂॻ࡞੒ࢧԉɺ࿦ จɾಛڐࣥචࢧԉ ੜ੒ܕݕࡧɿݕࡧ݁ Ռͷ·ͱΊ

Slide 59

Slide 59 text

ຊ೔ͷߨԋͷ಺༰ • ੜ੒"*ͱͦͷՄೳੑ • -*/&Ͱͷ"* • ͜Ε͔Βͷ"*ͱͦΕʹΑΓݟ͑ͯ͘ΔՄೳੑ

Slide 60

Slide 60 text

-*/&ʹ͓͚Δ"*ݚڀ /-1 "41 $7- 5SVTUXPSUIZ "* .VMUJNPEBM"*

Slide 61

Slide 61 text

1VCMJDBUJPOTBUUIFUPQUJFSDPOGFSFODFT 3%BDDPNQMJTINFOUT ': $POGFSFODFT    *$"441  */5&341&&$)  8"41""  #JH%BUB    *$"441  &64*1$0  */5&341&&$)  %$"4&  "14*1"  $713  51%1  '-*$.-  -%3$    *$"441  *$3"  *6*  *$%&  *$$7  "14*1"  */5&341&&$)  *&&&54141-    *$-3  *$"441  */5&341&&$)  4*(.0%  "14*1"  *+$7  4-5  7-%#   #JH%BUB    8"$7  """*  *$"441  4-5 

Slide 62

Slide 62 text

-*/&"*ͷ3%7JTJPO $POTFSWBUJWF %JTSVQUJWF 5JNF     *OUFSBDUJWFWJSUVBM FYQFSJFODF "VUPOPNPVT"* XPSLGMPX %JHJUBM.F .F"7"5"3 %JHJUBM*EFOUJUZ #FUUFS$BSF 5SVTUXPSUIZ"* "*'BJSOFTT &YQMBJOBCMF"* %BSL%BUB 0NOJQPUFOU"* (JHBOUJD-BOHVBHFNPEFM 6OMBCFMFE%BUB %BUB.BSLFUQMBDF (FOFSBUJWF*OUFMMJHFODF /FX&EVDBUJPO %FQFOEBCMF455 1SJWBDZQSFTFSWJOH 4FBN%JTDSJNJOBUPS -*/&ͷ࣋ͭଟ༷ͳ"*ཁૉٕज़Λجʹɺ෼໺ԣஅతͳٕज़Λ஫ྗٕज़ͱͯ͠શମײΛ࣋ͬͯݚڀ։ൃ͍ͯ͠·͢

Slide 63

Slide 63 text

63 OPUPOMZ$PHOJUJPO CVU $SFBUJWJUZTVQQPSU

Slide 64

Slide 64 text

世界でも⼤規模⾔語モデルの開発は限られ ⽇本ではHyperCLOVAが最⼤ ˞͜͜Ͱ͸#ఔ౓Ҏ্Λେن໛ͱදݱ Alibaba Tongyi Qianwen Cohere.ai Large LM DeepMind Gopher, Chinchilla, Flamingo Amazon Amazon Titan Baidu Ernie Bot Google T5, PaLM/PaLM-E, LaMDA/Bard MS-Nvidia Megatron-Turing NLG Anthropic Claude Kakaobrain koGPT3, Coyo LINE/WMJ HyperCLOVA NAVER HyperCLOVA OpenAI GPT/ChatGPT EleutherAI pythia Meta/Stanford/UCB OPT/LLaMA/Alpaca/Koala AI21 Labs Jurassic-1

Slide 65

Slide 65 text

จॻ࡞੒ࢧԉ ཁ݅ͷΈͷϝʔϧͰ࡞จ จॻߍਖ਼ɾ੔ܗɾλΠτϧੜ੒ σδλϧϚʔέςΟϯάࢧԉ Ωϟονίϐʔ࡞੒ࢧԉ େྔͷ঎඼ʹର͢Δ঎඼આ໌ ΧελϚέΞʔࢧԉ ސ٬Ұ࣍αϙʔτɾৼΓ෼͚ ίʔϧηϯλͷ͞ΒͳΔࣗಈԽ ৘ใऩूࢧԉ େྔͷσʔλʹج࣭ͮ͘໰ճ౴ จॻͷཁ໿ɾϨϙʔτੜ੒ݕࡧ ج൫Ϟσϧͷ׆༻ ͦͷଞ ίʔσΟϯάࢧԉɾจ๏νΣοΫɾ຋༁ɾɾɾ

Slide 66

Slide 66 text

-*/&ʹ͓͚Δج൫Ϟσϧߏங %FDPEFS

Slide 67

Slide 67 text

޿ࠂΩϟονίϐʔੜ੒ ΩʔϫʔυೖྗͷΈͰɺ؆қʹΩϟονΛෳ਺ੜ੒

Slide 68

Slide 68 text

ୈ̑ճ ର࿩γεςϜ ϥΠϒίϯϖςΟγϣϯ オープントラック シチュエーショントラック IUUQTTJUFTHPPHMFDPNWJFXETMD&#&&$ BVUIVTFS

Slide 69

Slide 69 text

%JBMPHVF3PCPU$PNQFUJUJPO *304ͷXPSLTIPQͱͯ͠։࠵͞Εͨର࿩ϩϘοτνϟϨϯδ

Slide 70

Slide 70 text

70 9"* 1SJWBDZDBSF UP $PMMBCPSBUJWF"* &UIJDBM'BJS"*

Slide 71

Slide 71 text

ج൫Ϟσϧʹ͓͚Δμ΢ϯαΠυݒ೦

Slide 72

Slide 72 text

"*ʹ͸ΨʔυϨʔϧ͕ඞཁ

Slide 73

Slide 73 text

/(ϫʔυʴ༗֐දݱ൑ఆ

Slide 74

Slide 74 text

)BMMVDJOBUJPOͷ௿ݮ

Slide 75

Slide 75 text

)BMMVDJOBUJPOͷ௿ݮ

Slide 76

Slide 76 text

5SVTUXPSUIZ"*ʹ޲͚ͯ What is Trustworthy AI? Expert Quality Explainability Transparency Confidentiality Fairness Harmless Robustness Compliance Trustworthy AI

Slide 77

Slide 77 text

&UIJDT3BEBS

Slide 78

Slide 78 text

ʢࢀߟʣޮ཰తͳςετํ๏ ҰํͰɺݴޠϞσϧ͸ྙཧతʹ໰୊ͷ͋ΔൃݴΛ͢ΔةݥੑΛ࣋ͭ ԥΔͧʂ YYY!NBJMDPN ·Ͱ࿈བྷͯ͠Ͷɻ ߈ܸతൃݴ ࿈བྷ৘ใͷ๫࿐

Slide 79

Slide 79 text

ఏҊख๏ɿ*UFSBUJWF4UPDIBTUJD'FXTIPU(FOFSBUJPO 3FE-. 5BSHFU-. 3FE$MG ߈ܸ ग़ྗ ௨஌

Slide 80

Slide 80 text

ఏҊख๏ɿ*UFSBUJWF4UPDIBTUJD'FXTIPU(FOFSBUJPO 3FE-. UFTUDBTF UFTUDBTF  -JTUPGRVFTUJPOT  \UFTUDBTF^   ϓϩϯϓτ 5BSHFU-. 3FE$MG ؂ࢹ ຒࠐ ೖྗ ςετέʔε Ϩεϙϯε ௥Ճ ςετέʔεϦετ

Slide 81

Slide 81 text

4BZVSJ • ୅ͷঁੑͷ੠ • গ͠໌Δ͘ɺਓؒΒ͍͠཈༲ %BJLJ • ୅ͷஉੑͷ੠ • མͪண͍ͨ੠ /BPNJ@# • /BPNJͷൃ࿩ελΠϧ֦ு • ঎඼΍ϨγϐͳͲΛ͓͢͢Ί͢Δςϯ γϣϯߴ͍ελΠϧ /BPNJ@" • ୅ͷঁੑͷ੠ • ໌Δ͞ͱམͪண͖ͷ͋Δ੠ • ਓؒΒ͍͠཈༲ 5PNPLP • ୅ͷঁੑͷ੠ • গ͠໌Δ͘ɺਓؒΒ͍͠཈༲ ଞʹ΋ੜ੒"*͍Ζ͍Ζ

Slide 82

Slide 82 text

$0OUSPMMBCMF )JHIRVBMJUZ "OEFYQ3FTT*WF554 ໌Δ͍ ҉͍ 😀 😄 🙂 😐 😢 😰 😥 ײ৘Λॊೈʹ੍ޚՄೳͳԻ੠߹੒Λ࣮ݱ ײ৘ͷ͜΋ͬͨԻ੠߹੒

Slide 83

Slide 83 text

83

Slide 84

Slide 84 text

-*/&"*ͷ3%7JTJPO $POTFSWBUJWF %JTSVQUJWF 5JNF     *OUFSBDUJWFWJSUVBM FYQFSJFODF "VUPOPNPVT"* XPSLGMPX %JHJUBM.F .F"7"5"3 %JHJUBM*EFOUJUZ #FUUFS$BSF 5SVTUXPSUIZ"* "*'BJSOFTT &YQMBJOBCMF"* %BSL%BUB 0NOJQPUFOU"* (JHBOUJD-BOHVBHFNPEFM 6OMBCFMFE%BUB %BUB.BSLFUQMBDF (FOFSBUJWF*OUFMMJHFODF /FX&EVDBUJPO %FQFOEBCMF455 1SJWBDZQSFTFSWJOH 4FBN%JTDSJNJOBUPS -*/&ͷ࣋ͭଟ༷ͳ"*ཁૉٕज़Λجʹɺ෼໺ԣஅతͳٕज़Λ஫ྗٕज़ͱͯ͠શମײΛ࣋ͬͯݚڀ։ൃ͍ͯ͠·͢

Slide 85

Slide 85 text

ࠓ·Ͱ࣮ݱ͖ͯͨ͠ιϦϡʔγϣϯ ஫ʣݱࡏ͸ؔ࿈ձࣾͰ͋ΔϫʔΫεϞόΠϧδϟύϯࣾΑΓఏڙத

Slide 86

Slide 86 text

ຊ೔ͷߨԋͷ಺༰ • ੜ੒"*ͱͦͷՄೳੑ • -*/&Ͱͷ"* • ͜Ε͔Βͷ"*ͱͦΕʹΑΓݟ͑ͯ͘ΔՄೳੑ

Slide 87

Slide 87 text

ࢲ͕ߟ͑ͨάϥϯυνϟϨϯδ "*ͰղܾͰ͖͍ͯͳ͍໰୊ 87 • ίϯύΫτͳ൚༻ਓ޻஌ೳ • লΤωਪ࿦ɾলΤωֶशʢେن໛ͳܭࢉثΛඞཁͱ ͠ͳ͍ʣ • ώτͷ೴ͷΑ͏ͳػೳ෼ԽΛ࣮ݱ͢ΔͨΊͷҰൠత ͳख๏ • ϩδΧϧͳਪ࿦ࢉज़ԋࢉɾ࿦ཧԋࢉͳͲ • ϖϧιφɾݸੑɾҰ؏ੑɿֶशͱهԱͷ౷߹ʹؔ͢ ΔҰൠతͳख๏ • ໨త΍໨ඪΛ࡞Γग़͢ɺαϒΰʔϧઃఆͳͲ • ৽ͨͳυϝΠϯ΁ͷదԠʢ[FSPGFXTIPUʣ • Ԡ༻Ϩϕϧͷ՝୊ • "*ྙཧɾݖར໰୊ɾϋϧγωʔγϣϯ $IBU(15ͷߟ͑ΔάϥϯυνϟϨϯδ

Slide 88

Slide 88 text

No content