Slide 1

Slide 1 text

Introduction to Objective-C Michael Jurewitz Developer Tools Evangelist 2 SCALA DAYS 2013 Ignacio Cases Department of Anthropology University at Albany State University of New York Deciphering Maya Hieroglyphic Writing using Scala Alfonso Lacadena Universidad Complutense de Madrid

Slide 2

Slide 2 text

@ignaciocases

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

A Crash Course Decipherment of Maya Writing 1950's Yurii Knorozov ■ Made assumptions about the nature of the writing system by analysing statistical distribution of signs and comparing to other scripts ■ Logograms ■ Phonetic signs ■ Used a XVI c. document by Diego de Landa, a Spanish franciscan that contained an "alphabet" and some examples ■ Used pre-Columbian codices to provide some decipherments using a substitution method

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

cu-tzu cutz 'turkey' tzu-lu tzul 'dog'

Slide 17

Slide 17 text

Maya Writing Basic Signs Phonetic Signs / Syllabograms

Slide 18

Slide 18 text

Maya Writing Basic Signs Logograms

Slide 19

Slide 19 text

7EB' 7ehb' 'scala'

Slide 20

Slide 20 text

Field Work

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

Deciphering Maya Hieroglyphic Writing using Scala In Site Use of Scala In site ■ calculation and reconstruction of calendrics: Spire ■ multi-ambient photography ■ photomosaic composition

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

Metadata (object description) Image Epigraphic Drawing Transcription Transliteration Translation

Slide 39

Slide 39 text

wa-WA'-ni wa'-wan-i 'walked' ti-su-tz'i-li ti' suutz'il '...' 'a-pa-ka-la Aj Pakal 'Aj Pakal' TAN-na Tahn 'Tahn' yi-[chi]NAL y-ichnal 'in the company of' IX-pa-ka-la Ix Pakal 'Ix Pakal' TUN-ni ? Tuun ? 'Stone ?' A10: A11: A12: A13: A14: A15: A16:

Slide 40

Slide 40 text

Corpus Linguistics

Slide 41

Slide 41 text

Corpus Linguistics Objectives Solve or provide insights on essential aspects ■ What is the percentage of signs deciphered? ■ What are the most frequent signs? ■ What are the less frequent signs? ■ What is the proportion of logograms and syllables ■ over time? ■ inside a text? ■ depends on genre? ■ What are the typical collocation of signs (signs-in-context)? ■ What are the inferred spelling rules? ■ And many more!

Slide 42

Slide 42 text

Corpus Linguistics Objectives Construction ■ Corpus for Classic Mayan texts ■ Tools to study the writing system and the language in a corpus–based approach ■ Quantitatively ■ e.g. statistic analysis ■ Qualitatively ■ e.g. concordances Draws on previous work by Lacadena and Cases (n.d.)

Slide 43

Slide 43 text

Corpus Linguistics Objectives Disciplines ■ Linguistics ■ Philological and Historic Critical Methods ■ Semiotics ■ Artificial Intelligence ■ Machine Learning ■ Computational Linguistics / Natural Language Processing ■ Hermeneumatics ■ The process of developing the framework makes us thinking on the nature of the problem

Slide 44

Slide 44 text

Corpus Construction

Slide 45

Slide 45 text

Corpus Construction Transcriptions ■ Sufficiently characterise our object of study ■ Transcriptions

Slide 46

Slide 46 text

wa-WA'-ni wa'-wan-i 'walked' ti-su-tz'i-li ti' suutz'il '...' 'a-pa-ka-la Aj Pakal 'Aj Pakal' TAN-na Tahn 'Tahn' yi-[chi]NAL y-ichnal 'in the company of' IX-pa-ka-la Ix Pakal 'Ix Pakal' TUN-ni ? Tuun ? 'Stone ?' A10: A11: A12: A13: A14: A15: A16:

Slide 47

Slide 47 text

Corpus Construction Transcriptions ■ Typically encode information that it is epigraphically important ■ But not always (we still need epigraphic drawings) ■ Need for a way to feed the system with data ■ Easy to generate by non programmer epigraphers ■ Easy to maintain ■ Easy to export –non locking technologies ■ Sufficiently annotated ■ Sufficiently rigorous –own experience (own corpora, others corpora) ■ Normalised

Slide 48

Slide 48 text

Corpus Construction Transcriptions ■ Transliterations can be obtained through a set of rules ■ proposed by scholars ■ learned using supervised learning (logistic regression and neural networks) Transcriptions + Spelling Rules = Transliterations wa-['i]ja WI'-na-li wa'iij wi'naal

Slide 49

Slide 49 text

Corpus Construction Transcriptions Solutions ■ Statistical Parsing ■ Low volume of data ■ External Domain Specific Language

Slide 50

Slide 50 text

Corpus Construction Basic Idea

Slide 51

Slide 51 text

Corpus Construction Basic Idea

Slide 52

Slide 52 text

Corpus Construction Basic Idea DSL

Slide 53

Slide 53 text

Source Transcription Transcription Header /*! @site: CML @mon: Urn 26 @object: Spine @objectOther: 3 @facture: @collation: ic @colVersion: 0.1 @since: 20/6/2012 @notes: @references: Zender (xxxx) @biblio: @imageFile: @drawingAuthor: Marc U. Zender @textDisposition: column @textDimensions: 1x13 */

Slide 54

Slide 54 text

Source Transcription Transcription Body A1: {13-#AJAW} // Tzolk'in Eroded A2: 18-HUL-OHL-la A3: CHUM TUN-ni A4: 'u-17-WINIK-HAB' A5: wa-['i]ja [K'IN]TUN-ni A6: wa-['i]ja WI'-na-li A7: tu-13-TUN-ni // $1:TUN? $2:ni? [...]

Slide 55

Slide 55 text

Source Transcription Transcriptions Two things needed ■ A proper ontology for the signs ■ Logogram, syllabogram, diacritics, etc ■ Defines a Grapheme Object Notation ■ Research problem per se ■ A set of rules governing the combination and production of graphemic chains ■ Important for the epigraphic field ■ Defines the external DSL

Slide 56

Slide 56 text

Sign Typology Grapheme Glyph Logograms Thompson Logogram Ontology Free Segmental Phonotactics Graphotactics

Slide 57

Slide 57 text

Grapheme Object Notation

Slide 58

Slide 58 text

Source Transcription Grapheme Object Notation ja T181 Moon reading value catalog entries tag

Slide 59

Slide 59 text

Source Transcription Grapheme Object Notation readingValue(ja).catalogThompson(T181) ja.T181.#Moon.d20 ja .tag(Moon) .numericalValue(20) .customField(“myField”, data)

Slide 60

Slide 60 text

Source Transcription Grapheme Object Notation WINIK T683 Moon 20 reading value catalog entries tag Numeric value / morphograph

Slide 61

Slide 61 text

Source Transcription Grapheme Object Notation readingValue(WINIK).catalogThompson(T683) WINIK.T683.#Moon.d20 WINIK .tag(Moon) .numericalValue(20) .customField(“myField”, data)

Slide 62

Slide 62 text

Implementation Details Status Monad Status of knowledge of the reading value ■ Status Monad ■ Known ■ Uncertain ■ NotKnown

Slide 63

Slide 63 text

Transcription DSL Implementation Details

Slide 64

Slide 64 text

Source Transcription Transcription as a Domain Specific Language ■ Parser implemented using parsing combinators (Odersky, Spoon & Venners 2010) ■ Abstract Syntax Tree (AST) ■ Implemented using Algebraic Data Types (Odersky, Spoon & Venners 2010) ■ Scalaz Tree (Kleisli, Huet Zipper)

Slide 65

Slide 65 text

Source Transcription Production Rules document ::= {block} block ::= (blockIdentifier ":") graphemicChains graphemicChains ::= {graphemicChain, "/"} graphemicChain ::= {grapheme | compound, "-"} compound ::= ("[" grapheme "]" grapheme) | (grapheme "[" grapheme "]") grapheme ::= mora | morphogram morphogram ::= ["'"] morphographicString mora ::= ["'"] moraString morphographicString ⟶ [A-Z0-9']+ moraString ⟶ [a-z']+ blockIdentifier ⟶ [p?A-Z0-9]+

Slide 66

Slide 66 text

Source Transcription Parsing /*! @site: CML @mon: Urn 26 @object: Spine @objectOther: 3 @facture: @collation: ic @colVersion: 0.1 @since: 20/6/2012 @notes: @references: Zender (xxxx) @biblio: @imageFile: @drawingAuthor: Marc U. Zender @textDisposition: column @textDimensions: 1x13 */ A1: {13-#AJAW} // Tzolk'in Eroded A2: 18-HUL-OHL-la A3: CHUM / TUN-ni A4: 'u-17-WINIK-HAB' A5: wa-['i]ja / [K'IN]TUN-ni A6: wa-['i]ja / WI'-na-li A7: tu-13-TUN-ni // $1:TUN? $2:ni? [...] Parser SyntaxTree

Slide 67

Slide 67 text

Source Transcription Syntax Tree

Slide 68

Slide 68 text

Corpus Linguistics Objectives Redux Solve or provide insights on essential aspects ■ What is the percentage of signs deciphered? ■ What are the most frequent signs? ■ What are the less frequent signs? ■ What is the proportion of logograms and syllables ■ over time? ■ inside a text? ■ depends on genre? ■ What are the typical collocation of signs (signs-in-context)? ■ What are the inferred spelling rules? ■ And many more!

Slide 69

Slide 69 text

Quantitative Analysis Frequencies

Slide 70

Slide 70 text

Quantitative Results Percentage of Known Graphemes ~94%

Slide 71

Slide 71 text

Quantitative Analysis Sign Frequency CML - PAL 96G 0 8 15 23 30 la AJAW na li ka K'INICH mu TUN ta b'a 13 u ku TZ'AK 5 tzi TZUTZ 10 hi 17 chi MO' ne ki TE' 18 CHAK 9 ISIG WAH HUL WI' MUWAN b'o yu 15 JU'N nu yo B'IH HA' WAXAK JAL ICH'AK MAHK

Slide 72

Slide 72 text

Quantitative Analysis Sign Frequency CML - PAL 96G 0 8 15 23 30 la u ya AJAW wa ni na ja ti li WINIKHAB' ji ka CHUM le K'INICH i B'AK mu WINIK HAB' TUN K'UH AJ ta a 7 b'a NAH pa 13 K'AN

Slide 73

Slide 73 text

a e i o u ' b' ch ch' h j k k' l m n p p' s t t' tz tz' w x y Quantitative Analysis Sign Frequency Western Maya Lowlands

Slide 74

Slide 74 text

Other Writing Systems Frequencies

Slide 75

Slide 75 text

Quantitative Analysis Cumulative Percentage Cumulative Percentage 0 25 50 75 100 1 46 91 136 181 226 Cumulative Percentage

Slide 76

Slide 76 text

Quantitative Analysis Graphemic Distribution

Slide 77

Slide 77 text

Comalcalco – Urn 26 Graphemic Distribution

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

Quantitative Analysis Graphemic Distribution 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 glyph number glyph number CML Urn 26 Spine 2 Corpus Analysis Morphographicity 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Logogram Phonogram 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 Logogram Relative Phonogram Relative glyph number glyph number CML Urn 26 Spine 2

Slide 80

Slide 80 text

Quantitative Analysis Graphemic Distribution glyph number glyph number 0 8 15 23 30 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 0 0,25 0,50 0,75 1,00 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 Gráfica 10 CML Urn 26 Spine 3 Corpus Analysis Morphographicity 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Logogram Phonogram 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 Logogram Relative Phonogram Relative glyph number glyph number CML Urn 26 Spine 2

Slide 81

Slide 81 text

Quantitative Analysis Graphemic Distribution 0 8 15 23 30 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 Logogram Phonogram 0 0,25 0,50 0,75 1,00 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 Gráfica 10 CML Urn 26 Spine 4 Corpus Analysis Morphographicity 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Logogram Phonogram 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 Logogram Relative Phonogram Relative glyph number glyph number CML Urn 26 Spine 2

Slide 82

Slide 82 text

Palenque – Cross Group Graphemic Distribution

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

Quantitative Analysis Graphemic Distribution Corpus Analysis Morphographicity 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Logogram Phonogram 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 Logogram Relative Phonogram Relative glyph number glyph number CML Urn 26 Spine 2 0 100 200 300 400 0 100 200 300 400 500 600 0 0,25 0,50 0,75 1,00 Gráfica 10 PAL TC Main

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

Quantitative Analysis Graphemic Distribution PAL TFC Main Corpus Analysis Morphographicity 0 8 15 23 30 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Logogram Phonogram 0 0,25 0,50 0,75 1,00 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Gráfica 10 Logogram Relative Phonogram Relative glyph number glyph number CML Urn 26 Spine 2 0 75 150 225 300 1 76 151 226 301 376 0 0,25 0,50 0,75 1,00 1 76 151 226 301 376 Gráfica 10

Slide 87

Slide 87 text

Quantitative Analysis Zipf-Mandelbrot

Slide 88

Slide 88 text

Quantitative Analysis Discrete Pareto Distributions Zipf's Law Zipf-Mandelbrot's Law

Slide 89

Slide 89 text

Quantitative Analysis Frequency vs Rank in CML and PAL 0 29 58 86 115 1 20 39 58 77 96 115 134 153 172 191 210 Frequency vs Rank in CML Urn 26 and PAL (96G + TC + TFC)

Slide 90

Slide 90 text

Overview Zipf coefficients Zipf's Law λ ~ 0.98, 1.026, 1.218 a ~ 127, 183.95, 816.38 Miller (1965) randomly generated texts also exihibits Zipf's law Li (1992) Zipf's law is related to the particular representation Ferrer-i-Cancho & Solé (2001)

Slide 91

Slide 91 text

Qualitative Analysis Search Engine and Concordance Generator

Slide 92

Slide 92 text

Requirements Concordancer Concordance for WAY Unkown provenience Partial count #2 -la-ja ta-AJAW-le G3: B'AK-le WAY -la H3: AJ-pi-tzi-la-wa-la G4: J1: TA-AJAW-le I2: B'AK-le wa- WAY -la J2: AJ-pi-tzi-la-wa-la I3: PAL – TempleoftheCross, ShrineFaçade Partial count #1 CH-KAN-B'AHLAM-ma M3: B'AK-le- WAY -wa M4: AJ-pi-tzi-la-OHL M5: ' PAL – Temple of the Cross, Alfardas Partial count #1 K'INICH-KAN-B'AHLAM J1: B'AK- WAY -la I2: 'u-MIHIN-li J2: K'INIC PAL – Temple of the Foliated Cross, Main Partial count #3 a D7: 2-PIK C8: 2-'AJAW D8: 3- WAY -HAB' C9: 'u-TZAK D9: K'UH C10 L-HUN G3: tu-'u-B'AH H3: B'AK- WAY -wa-la G4: K'INICH-[KAN-B'AHLA H10: K'INICH-?-?-wa G11: 'IK'- WAY -CHAHK H11: AKAN-YAX-ja G12: I

Slide 93

Slide 93 text

Web application

Slide 94

Slide 94 text

Quadra Web Application SALAT Cardano

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

No content

Slide 97

Slide 97 text

Thank you! [email protected] @ignaciocases

Slide 98

Slide 98 text

Deciphering Maya Hieroglyphic Writing using Scala Credits Nacho en la noche courtesy of Clemence Lallemand. Izaña Observatory (IAC) photograph by Jonay González Hernández. Writing Systems in Mesoamerica courtesy of Alfonso Lacadena. Monkeys and scorpion photographs by Julio Cotom. Tarantula and deck photographs by Divina Perla. 96G tablet photograph from mesoweb.org. Temple of the Inscriptions (Palenque) photograph from Wikipedia (http://en.wikipedia.org/Palenque). K6751 photograph courtesy of Justin Kerr (http://mayavase.com). Dresden Codex from a facsimile of the Förstemann Edition. Knorozov figures courtesy of Harri Kettunen and Cristophe Helmke. Comalcalco Urn 26 photographs and drawings courtesy of Marc Zender and Arqlgo. Ricardo Armijo. Palenque's epigraphic drawings courtesy of David Stuart, Linda Schele, and Merle Green Robertson. How to dial telephones from "Training film for users of the new dial telephones", public domain film from the Library of Congress Prelinger Archive, edited by Jeff Quitney. Switchboard caption from AT&T Archives (http://techchannel.att.com). Logos from their respective owners (typesafe.com; cappuccino-project.org; lesscss.org; www.w3.org/html/logo; www.mongodb.org).

Slide 99

Slide 99 text

Deciphering Maya Hieroglyphic Writing using Scala Credits Unless unintended omission, all other photographs and illustrations by Ignacio Cases. The author wishes to thank Proyecto Arqueológico Comalcalco (Ricardo Armijo), Proyecto Arqueológico Calakmul (Ramón Carrasco), Proyecto Arqueológico Río Bec ( Philippe Nondedeo, Dominique Michelet), and Proyecto Arqueológico Petén Norte Naachtún (Carlos Morales-Aguilar, Philippe Nondedeo, Dominique Michelet).