Slide 1

Slide 1 text

InfluxDB 2.0 and #fluxlang Paul Dix paul@influxdata.com @pauldix

Slide 2

Slide 2 text

an open source time series database

Slide 3

Slide 3 text

What is time series data?

Slide 4

Slide 4 text

Stock trades and quotes

Slide 5

Slide 5 text

Metrics

Slide 6

Slide 6 text

Analytics

Slide 7

Slide 7 text

Events

Slide 8

Slide 8 text

Sensor data

Slide 9

Slide 9 text

Two kinds of time series data…

Slide 10

Slide 10 text

Regular time series t0 t1 t2 t3 t4 t6 t7 Samples at regular intervals

Slide 11

Slide 11 text

Irregular time series t0 t1 t2 t3 t4 t6 t7 Events whenever they come in

Slide 12

Slide 12 text

Data that you ask questions about over time

Slide 13

Slide 13 text

Solve common problems

Slide 14

Slide 14 text

data collector

Slide 15

Slide 15 text

processing, ETL, monitoring, alerting

Slide 16

Slide 16 text

UI, visualization, management

Slide 17

Slide 17 text

TICK for time series data

Slide 18

Slide 18 text

Common Schema

Slide 19

Slide 19 text

Line Protocol cpu,host=serverA,num=1,region=west idle=1.667,system=2342.2 1492214400000000000

Slide 20

Slide 20 text

Line Protocol Measurement cpu,host=serverA,num=1,region=west idle=1.667,system=2342.2 1492214400000000000

Slide 21

Slide 21 text

Line Protocol cpu,host=serverA,num=1,region=west idle=1.667,system=2342.2 1492214400000000000 Tags

Slide 22

Slide 22 text

Line Protocol cpu,host=serverA,num=1,region=west idle=1.667,system=2342.2 1492214400000000000 Fields

Slide 23

Slide 23 text

float64, int64, bool, string

Slide 24

Slide 24 text

Line Protocol cpu,host=serverA,num=1,region=west idle=1.667,system=2342.2 1492214400000000000 nanosecond epoch

Slide 25

Slide 25 text

Query Language

Slide 26

Slide 26 text

SQL-ish select percentile(90, value) from cpu where time > now() - 1d group by time(10m)

Slide 27

Slide 27 text

No Common API

Slide 28

Slide 28 text

Different Languages for Query & Monitoring

Slide 29

Slide 29 text

2.0

Slide 30

Slide 30 text

• MIT Licensed • TSDB (write, query) • UI & Visualizations, Dashboards • Pull Metrics (Prometheus & OpenMetrics) • Tasks (background processing, ETL, monitoring/alerting)

Slide 31

Slide 31 text

> DB

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

Officially Supported Client Libraries Go, Node.js, Ruby, Python, PHP, Java, C#, C, Kotlin

Slide 36

Slide 36 text

Visualization Libraries

Slide 37

Slide 37 text

Data Model • Organization • Dashboards • Tasks • Buckets • Scrapers & Telegraf configs • Labels • Users

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

• Query planner • Query optimizer • Turing complete language, VM, and query engine • Multi-language support in Engine • Multi-data source support • InfluxDB, CLI, REPL, Go library

Slide 40

Slide 40 text

Flux Language Elements

Slide 41

Slide 41 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Slide 42

Slide 42 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Comments

Slide 43

Slide 43 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Named Arguments

Slide 44

Slide 44 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") String Literals

Slide 45

Slide 45 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Buckets, not DBs

Slide 46

Slide 46 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Duration Literal

Slide 47

Slide 47 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:2018-11-07T00:00:00Z) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Time Literal

Slide 48

Slide 48 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Pipe forward operator

Slide 49

Slide 49 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system") Anonymous Function

Slide 50

Slide 50 text

// get all data from the telegraf db from(bucket:”telegraf/autogen”) // filter that by the last hour |> range(start:-1h) // filter further by series with a specific measurement and field |> filter(fn: (r) => (r._measurement == "cpu" or r._measurement == “cpu") and r.host == “serverA") Predicate Function

Slide 51

Slide 51 text

// variables some_int = 23

Slide 52

Slide 52 text

// variables some_int = 23 some_float = 23.2

Slide 53

Slide 53 text

// variables some_int = 23 some_float = 23.2 some_string = “cpu"

Slide 54

Slide 54 text

// variables some_int = 23 some_float = 23.2 some_string = “cpu" some_duration = 1h

Slide 55

Slide 55 text

// variables some_int = 23 some_float = 23.2 some_string = “cpu" some_duration = 1h some_time = 2018-10-10T19:00:00

Slide 56

Slide 56 text

// variables some_int = 23 some_float = 23.2 some_string = “cpu" some_duration = 1h some_time = 2018-10-10T19:00:00 some_array = [1, 6, 20, 22]

Slide 57

Slide 57 text

// variables some_int = 23 some_float = 23.2 some_string = “cpu" some_duration = 1h some_time = 2018-10-10T19:00:00 some_array = [1, 6, 20, 22] some_object = {foo: "hello" bar: 22}

Slide 58

Slide 58 text

// defining a pipe forwardable function square = (tables=<-) => tables |> map(fn: (r) => {r with _value: r._value * r._value})

Slide 59

Slide 59 text

// defining a pipe forwardable function square = (tables=<-) => tables |> map(fn: (r) => {r with _value: r._value * r._value}) Accepts a pipe forward assigns to tables variable

Slide 60

Slide 60 text

// defining a pipe forwardable function square = (tables=<-) => tables |> map(fn: (r) => {r with _value: r._value * r._value}) from(bucket:"foo") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "samples") |> square() |> filter(fn: (r) => r._value > 23.2)

Slide 61

Slide 61 text

// defining a pipe forwardable function square = (tables=<-) => tables |> map(fn: (r) => {r with _value: r._value * r._value}) from(bucket:"foo") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "samples") |> square() |> filter(fn: (r) => r._value > 23.2) Calling the function

Slide 62

Slide 62 text

Data Model & Working with Tables

Slide 63

Slide 63 text

Example Series _measurement=mem,host=A,region=west,_field=free _measurement=mem,host=B,region=west,_field=free _measurement=cpu,host=A,region=west,_field=usage_system _measurement=cpu,host=A,region=west,_field=usage_user

Slide 64

Slide 64 text

Example Series _measurement=mem,host=A,region=west,_field=free _measurement=mem,host=B,region=west,_field=free _measurement=cpu,host=A,region=west,_field=usage_system _measurement=cpu,host=A,region=west,_field=usage_user Measurement

Slide 65

Slide 65 text

Example Series _measurement=mem,host=A,region=west,_field=free _measurement=mem,host=B,region=west,_field=free _measurement=cpu,host=A,region=west,_field=usage_system _measurement=cpu,host=A,region=west,_field=usage_user Field

Slide 66

Slide 66 text

Table _measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 10

Slide 67

Slide 67 text

_measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 10 Column

Slide 68

Slide 68 text

_measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 10 Record

Slide 69

Slide 69 text

_measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 10 Group Key _measurement=mem,host=A,region=west,_field=free

Slide 70

Slide 70 text

_measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 10 Every record has the same value! _measurement=mem,host=A,region=west,_field=free

Slide 71

Slide 71 text

Table Per Series _measurement host region _field _time _value mem A west free 2018-06-14T09:15:00 10 mem A west free 2018-06-14T09:14:50 11 _measurement host region _field _time _value mem B west free 2018-06-14T09:15:00 20 mem B west free 2018-06-14T09:14:50 22 _measurement host region _field _time _value cpu A west usage_user 2018-06-14T09:15:00 45 cpu A west usage_user 2018-06-14T09:14:50 49 _measurement host region _field _time _value cpu A west usage_system 2018-06-14T09:15:00 35 cpu A west usage_system 2018-06-14T09:14:50 38

Slide 72

Slide 72 text

input tables -> function -> output tables

Slide 73

Slide 73 text

input tables -> function -> output tables // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum()

Slide 74

Slide 74 text

input tables -> function -> output tables What to sum on? // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum()

Slide 75

Slide 75 text

input tables -> function -> output tables Default columns argument // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum(columns: [“_value”])

Slide 76

Slide 76 text

input tables -> function -> output tables _meas ureme host region _field _time _valu e mem A west free 2018-06- 14T09:1 10 mem A west free 2018-06- 14T09:1 11 _meas ureme host region _field _time _valu e mem B west free 2018-06- 14T09:15 20 mem B west free 2018-06- 14T09:14 22 Input in table form // example query from(bucket:”telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum()

Slide 77

Slide 77 text

input tables -> function -> output tables _meas ureme host region _field _time _valu e mem A west free 2018-06- 14T09:1 10 mem A west free 2018-06- 14T09:1 11 _meas ureme host region _field _time _valu e mem B west free 2018-06- 14T09:15 20 mem B west free 2018-06- 14T09:14 22 sum() // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum()

Slide 78

Slide 78 text

input tables -> function -> output tables // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:50, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> sum() _meas ureme host region _field _time _valu e mem A west free 2018-06- 14T09:1 10 mem A west free 2018-06- 14T09:1 11 _meas ureme host region _field _time _valu e mem B west free 2018-06- 14T09:15 20 mem B west free 2018-06- 14T09:14 22 sum() _meas ureme host region _field _time _valu e mem A west free 2018-06- 14T09:1 21 _meas ureme host region _field _time _valu e mem B west free 2018-06- 14T09:15 42

Slide 79

Slide 79 text

N to N table mapping (1 to 1 mapping)

Slide 80

Slide 80 text

N to M table mapping

Slide 81

Slide 81 text

window // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s) 30s of data (4 samples)

Slide 82

Slide 82 text

window // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s) split into 20s windows

Slide 83

Slide 83 text

window _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s) Input

Slide 84

Slide 84 text

window _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 window( every:20s) // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s)

Slide 85

Slide 85 text

window _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 window( every:20s) // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s) _meas ureme host region _field _time _valu e mem A west free …14:30 10 mem A west free …14:40 11 _meas ureme host region _field _time _valu e mem B west free …14:50 23 mem B west free …15:00 24 _meas ureme host region _field _time _valu e mem B west free …14:30 20 mem B west free …14:40 22 _meas ureme host region _field _time _valu e mem A west free …14:50 12 mem A west free …15:00 13

Slide 86

Slide 86 text

window _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 window( every:20s) // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> window(every:20s) _meas ureme host region _field _time _valu e mem A west free …14:30 10 mem A west free …14:40 11 _meas ureme host region _field _time _valu e mem B west free …14:50 23 mem B west free …15:00 24 _meas ureme host region _field _time _valu e mem B west free …14:30 20 mem B west free …14:40 22 _meas ureme host region _field _time _valu e mem A west free …14:50 12 mem A west free …15:00 13 N to M tables

Slide 87

Slide 87 text

Window based on time _start and _stop columns

Slide 88

Slide 88 text

group // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> group(keys:[“region"])

Slide 89

Slide 89 text

group // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> group(keys:[“region"]) new group key

Slide 90

Slide 90 text

group _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> group(keys:[“region"])

Slide 91

Slide 91 text

group _meas host region _field _time _valu mem A west free …14:30 10 mem A west free …14:40 11 mem A west free …14:50 12 mem A west free …15:00 13 _meas host region _field _time _valu mem B west free …14:30 20 mem B west free …14:40 22 mem B west free …14:50 23 mem B west free …15:00 24 group( keys: [“region”]) // example query from(bucket:"telegraf") |> range(start:2018-06-14T09:14:30, stop:2018-06-14T09:15:01) |> filter(fn: r => r._measurement == “mem" and r._field == “free”) |> group(keys:[“region"]) _meas ureme host region _field _time _valu e mem A west free …14:30 10 mem B west free …14:30 20 mem A west free …14:40 11 mem B west free …14:40 21 mem A west free …14:50 12 mem B west free …14:50 22 mem B west free …15:00 13 mem B west free …15:00 23 N to M tables M == cardinality(group keys)

Slide 92

Slide 92 text

Group based on columns

Slide 93

Slide 93 text

New Language?

Slide 94

Slide 94 text

4GL

Slide 95

Slide 95 text

Domain Specific Languages

Slide 96

Slide 96 text

JavaScript?

Slide 97

Slide 97 text

GUI

Slide 98

Slide 98 text

Many Data Sources

Slide 99

Slide 99 text

Optimize for each

Slide 100

Slide 100 text

Cross compilation

Slide 101

Slide 101 text

No content

Slide 102

Slide 102 text

AST = API

Slide 103

Slide 103 text

Distributed Engine

Slide 104

Slide 104 text

No content

Slide 105

Slide 105 text

Tables Everywhere

Slide 106

Slide 106 text

from(bucket: "foo") |> range(start: -10m) |> filter(fn: (r) => r._measurement == "cpu") |> group(columns: ["_measurement"]) |> sort(columns: ["_value"]) Sorting by value!

Slide 107

Slide 107 text

Group by anything

Slide 108

Slide 108 text

Measurements, tags, fields don’t matter

Slide 109

Slide 109 text

Beyond Queries

Slide 110

Slide 110 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message)

Slide 111

Slide 111 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) tasks

Slide 112

Slide 112 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) cron scheduling

Slide 113

Slide 113 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) packages & imports

Slide 114

Slide 114 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) String interpolation

Slide 115

Slide 115 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) Ship data elsewhere

Slide 116

Slide 116 text

option task = { name: "email alert digest", cron: "0 5 * * 0" } import "smtp" body = "" from(bucket: "alerts") |> range(start: -24h) |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message") |> group(columns: ["alert"]) |> count() |> group() |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n") smtp.to( config: loadSecret(name: "smtp_digest"), to: "[email protected]", title: "Alert digest for {now()}", body: message) Store secrets in a store like Vault

Slide 117

Slide 117 text

Monitoring as Code

Slide 118

Slide 118 text

No content

Slide 119

Slide 119 text

• Finalizing Spec • Error Handling • Test Runner & CLI • User Packages • Flow Control (if/else) Status

Slide 120

Slide 120 text

Status • Alpha 7 this week • API, Tasks, Dashboards • Client Libraries (soon) • Monitoring & Alerting (soon)

Slide 121

Slide 121 text

https://influxdata.com/download 2.0

Slide 122

Slide 122 text

Thank you Paul Dix @pauldix paul@influxdata.com