Slide 1

Slide 1 text

回転座標系での古典場の⽅程式 について。微分形式からの導出 2022年4⽉29⽇ 量⼦と古典の物理と幾何@オンライン DeepFlow株式会社 深川宏樹 [email protected] 1

Slide 2

Slide 2 text

流体機械(シロッコファン) 2 https://www.youtube.com/watch?v=o1xFOIbhbzk Rotating-peg, r=10.5[m], 11.5[rad/s],Re=10^3. 圧力 速度

Slide 3

Slide 3 text

シミュレーション結果 3 Rotating-peg, r=10.5[m], 11.5[rad/s],Re=10^3. 圧力 速度 https://www.youtube.com/watch?v=o1xFOIbhbzk

Slide 4

Slide 4 text

回転系の流体の⽅程式 4 !" !# + " ⋅ ∇ " = − 1 * ∇+ + ,Δ" + (慣性力項) ! 時間項 移流項 圧⼒項 粘性項

Slide 5

Slide 5 text

コリオリ⼒と遠⼼⼒ 5 慣性⼒= −21×" − 1×(1×3) ! −2#×% −#×(#×') % ' コリオリ⼒ 遠⼼⼒ 回転座標系で中⼼に向かって移動

Slide 6

Slide 6 text

コリオリ⼒と遠⼼⼒ 6 ! −#×(#×') % ( −2#×% = 2#×(#×') 慣性系で静⽌=回転座標系で回転⽅向とは逆向きに移動 %=−#×' コリオリ⼒ 遠⼼⼒

Slide 7

Slide 7 text

回転系の流体の⽅程式(通説) 7 !" !# + " ⋅ ∇ " = − 1 * ∇+ + ,Δ" − 21×" − 1×(1×3) コリオリ⼒ 遠⼼⼒ ! −2#×% −#×(#×') % '

Slide 8

Slide 8 text

回転座標系のナビエ・ストークス 回転座標系のナビエ・ストークス⽅程式の導出を⾒たことがない… 8 11 (2021) 100096 Derivation of Navier–Stokes equation in rotational frame for engineering flow analysis Sananth H. Menon *, Ramachandra Rao A, Jojo Mathew, Jayaprakash J Solid Propulsion & Research Entity, Vikram Sarabhai Space Centre, ISRO, India A R T I C L E I N F O Keywords: Navier–Stokes equation Rotational frame Coriolis force A B S T R A C T One of the most frequently used governing equations underpinning engineering flow analysis is the renowned Navier–Stokes (NS) equation. Several references regarding the derivation of equation of motion in Cartesian coordinates are available in standard textbooks. However, derivation of above equation in rotational frame is missing in literatures. Flow analysis using NS equation in rotational frame is a prerequisite for analysis of various engineering problems like rotational flow dynamics in chemical reactors, lubricating oil behavior in various rotating machines, electrolyte flow behavior in electrochemical reactors with rotating electrodes, etc. Systematic understanding of each terms in the equation is essential to develop a suitable governing mathematical model of any physical flow problem with various level of complexities. This is possible only if same can be derived from fundamentals, detailing terms behind the equation. A systematic approach is made here to derive NS equation in rotational frame from basic Cartesian form. Contents lists available at ScienceDirect International Journal of Thermofluids journal homepage: www.sciencedirect.com/journal/international-journal-of-thermofluids One of the most frequently used governing equations underpinning engineering flow analysis is the renowned Navier–Stokes (NS) equation. Several references regarding the derivation of equation of motion in Cartesian coordinates are available in standard textbooks. However, derivation of above equation in rotational frame is missing in literatures. 計算がたいへん。 幾何的な意味を追うのが難しい。

Slide 9

Slide 9 text

回転系での移流項 9 ! % ( "! = " + 1×3 !"′ !# + "′ ⋅ ∇ "! = !" !# + " ⋅ ∇ " +21×" + 1× 1×3 慣性系 回転系 ↑ほんと? 微分形式で導出してみた。

Slide 10

Slide 10 text

微分形式でのナビエ・ストークス⽅程式 10 !"! !# + ℒ"! − 1 2 d7"! "! = − 1 * d+ + ,Δ"’ !"′ !# + "′ ⋅ ∇ "′ = − 1 * ∇+ + ,Δ"′

Slide 11

Slide 11 text

移流項 11 ℒ"! − 1 2 d7"! "! = 7"!d + 1 2 d7"! "! = 7"!d"! + 1 2 dg "!, "! = −"!×rot "! + 1 2 grad ?!# ℒ"! = 7"!d + d7"! リー微分

Slide 12

Slide 12 text

微分形式 外微分 d 12 grad f: d# = %# %&! d&! + %# %&" d&" + %# % d rot +: d - $ # (/$ 0&$) = - %,$ # %/$ %&% d&% ∧ 0&$ = %/' %& − %/( %4 d& ∧ 04 + ⋯ d" d# d" ∧ d#=−(d# ∧ dz) ⼀形式 + = ∑ % /% d&%

Slide 13

Slide 13 text

微分形式 内部積 !7 8 とリー微分 ℒ7 8 13 ベクトル場 7 8 = 9% % %&% ⼀形式 + = ∑ % /% d&% 内部積 :) * + = ∑ %+! # 9% /% :) * + ∧ ; = :) * + ∧ ; − :) * ; ∧ + リー微分 ℒ, - + = :) * d+ + d:) * + = −8×rot + + grad 8, +

Slide 14

Slide 14 text

微分形式 ホッジ作⽤素 14 ∗: A形式→(3−k)形式 ∗ 1 = d& ∧ d4 ∧ dC ∗ dC = d& ∧ d4 ∗ (d& ∧ d4) = 0C ∗ (d& ∧ d4 ∧ dC) = 1 ∗∗= 1 d" d# d" ∧ d# d& =∗ (d" ∧ d#)

Slide 15

Slide 15 text

移流項 15 ℒ "$% − 1 2 d7 "$% " + @ = ℒ& "" − 1 2 dg ", " +7& "d@ − 1 2 dg @, @ +ℒ& %" + ℒ& %@ 慣性⼒項 "! = " + A 慣性系 回転系 D = E0C % ( + , +

Slide 16

Slide 16 text

移流項 16 + = "×$ =∗ , ∧ - =∗ .d& ∧ /d/ = ./!d0 "! = " + A 慣性系 回転系 D = E dC % ( + , + d/ /d0 d/ ∧ /d0 d& =∗ (d/ ∧ /d0)

Slide 17

Slide 17 text

慣性⼒ 17 コリオリ⼒ 7& "d@ = 7& "d BC# dD = 27& " B dC ∧ CdD = 2(B?'CdD − B?(dC) = 27& "(∗ 1) (= 21×") Lwv ˜ = (dÿw + ÿwd) v = d(r 2 Êv ◊) + ÿwdv = d(r 2 Êv ◊) + ÿw 1 2rv ◊ dr · d◊ + r 2 dv ◊ · d◊ + dv r · = r 2 Êdv ◊ + 2rÊv ◊ dr ≠ 2rÊv ◊ dr ≠ r 2 Êdv ◊ + Ê A r 2 = Ê A ˆ(r 2 v ◊) ˆ◊ d◊ + ˆv r ˆ◊ dr + ˆv z ˆ◊ dz B Lvw ˜ = Lv(Êr 2 d◊) 2 遠⼼⼒ 1 2 dg @, @ = 1 2 d B#C# = B#C dC =∗ (1 ∧ @)(= 1× 1×3 ) D = E dz % ( + , + " = ?'dC + ?(CdD + ?)dz @ = BC#dD =∗ 1 ∧ CdC

Slide 18

Slide 18 text

慣性⼒ 18 Lwv ˜ = (dÿw + ÿwd) v = d(r 2 Êv ◊) + ÿwdv = d(r 2 Êv ◊) + ÿw 1 2rv ◊ dr · d◊ + r 2 dv ◊ · d◊ + dv r · = r 2 Êdv ◊ + 2rÊv ◊ dr ≠ 2rÊv ◊ dr ≠ r 2 Êdv ◊ + Ê A r 2 = Ê A ˆ(r 2 v ◊) ˆ◊ d◊ + ˆv r ˆ◊ dr + ˆv z ˆ◊ dz B Lvw ˜ = Lv(Êr 2 d◊) 2 ℒ& %" = 7& %d" + d7& %" = −@×rot " + grad @, " = B !?' !D dC + !?( !D CdD + !?) !D Hz Lvw ˜ = Lv(Êr 2 d◊) = (dÿv + ÿvd) (Êr 2 d◊) = d(r 2 Êv ◊) + ÿvd(Êr 2 d◊) = d(r 2 Êv ◊) + ÿv2rÊdr · d◊ = r 2 Êdv ◊ + 2rÊv ◊ dr ≠ 2rÊv ◊ dr + 2rÊv r d◊ = r 2 Êdv ◊ + 2rÊv r d◊ 1 2dg(v + w, v + w) = 1 2d(g(v, v) + 2r 2 v ◊ Ê + r 2 Ê 2 ) = 1 2dg(v, v) + r 2 Êdv ◊ + 2v ◊ Êrdr + Ê 2 rdr ɺ (ˆt + Lu) u ˜ ≠ 1 dg(u, u) " = ?'dC + ?(CdD + ?)dz @ = BC#dD =∗ 1 ∧ CdC ℒ %&' − 1 2 d& %&' ' + ) = ℒ( % ' − 1 2 dg ', ' +&( % d) − 1 2 dg ), ) +ℒ( ' ' + ℒ( ' ) 慣性⼒項

Slide 19

Slide 19 text

回転座標系のナビエ・ストークス 19 !" !# + ℒ& " − 1 2 d7& " " = − 1 * d+ + ,Δ"’ −7& " d@ + 1 2 dg @, @ − ℒ& %" コリオリ⼒ 遠⼼⼒ !

Slide 20

Slide 20 text

まとめ 微分形式を使うと任意の座標系の計算が簡単に直接できる。 慣性⼒は、もう⼀つ項があった。 20 !" !# + ℒ& " − 1 2 d7& " " = − 1 * d+ + ,Δ"’ −7& " d@ + 1 2 dg @, @ − ℒ& %" コリオリ⼒ 遠⼼⼒ "×rot ' − grad ", ' −2.×' − .×(.×0) 2 = .×0 ) *+! *, d. + *+" *, .d, + *+# *, 0z