Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
TabNet: Attentive Interpretable Tabular Learning ಡΈձ@2021/01/05 ༶໌
Slide 2
Slide 2 text
• ஶऀ • Sercan O. Arik, Tomas Pfister • Google Cloud AI • ग़య: ArxivͷPreprint • ICLR 2020ͰϦδΣΫτ͞Εͨจ จใ
Slide 3
Slide 3 text
• ςʔϒϧσʔλ͚ͷDNNϞσϧ • ܾఆͱNNϞσϧͷ͍͍ͱ͜औΓΛࢦͨ͠ख๏ • ղऍੑ + ਫ਼ ͷ্͕ୡͰ͖ͨɽ ֓ཁ ͲΜͳจʁ
Slide 4
Slide 4 text
• DNNͷϞσϧ͕ಛʹը૾,ݴޠ,ԻͷͰSOTAͰ͋Δɽ • KaggleͳͲͷੳίϯϖͰॳΊʹܾఆϕʔεͷख๏͕ओྲྀ • ղऍੑ͕ߴ͍͔Β ং ݚڀഎܠ
Slide 5
Slide 5 text
• ͳΜͰςʔϒϧσʔλʹରͯ͠ɼਂֶशΛऔΓೖΕ͍ͨͷ͔ʁ • େنͳσʔληοτʹ͍ͨͯ͠ɼਂֶशʹΑ্͕ͬͯظͰ͖Δ ͔Β • Deep Learning Scaling is Predictable, Empirically.(Hestness et al., 2017) ং ݚڀഎܠ
Slide 6
Slide 6 text
• ςʔϒϧσʔλʹରͯ͠NNϞσϧΛ͏3ͭͷϝϦοτ 1. ෳͷσʔλΛޮΑ͘ΤϯίʔσΟϯάͰ͖Δ 2. ಛྔΤϯδχΞϦϯάͷखؒΛݮΒͤΔ 3. End-to-endͰѻ͏͜ͱ͕Ͱ͖Δɽ ং ݚڀഎܠ
Slide 7
Slide 7 text
• σʔλͷલॲཧΛߦΘͣʹend-to-endͰͷֶशΛߦ͑Δɽ • ஞ࣍ҙΛ༻͍Δ͜ͱͰղऍੑͷߴ͍Ϟσϧʹͳ͍ͬͯΔɽ • Local interpretability: ೖྗಛͷॏཁ • Global interpretability: ֤ಛྔ͕Ϟσϧʹରͯ͠Ͳͷ͘Β͍Өڹ͔ͨ͠ ং ఏҊख๏ͷߩݙ
Slide 8
Slide 8 text
• DNN+DT • ஞ࣍ҙΛ༻͍ͯɼಛબΛߦ͍ಛΛೖΕࠐΜͰ͍Δɽ • Tree-based learning • ಛબʹDNNΛ༻͍͍ͯΔɽ • Feature Selection • ίϯύΫτͳදݱ͕Ͱ͖ͨɽ ؔ࿈ݚڀ
Slide 9
Slide 9 text
• Attentive transformer • ಛྔʹରͯ͠͏MaskͷֶशΛߦ͏ɽ • Feature transformer • ಛྔͷมɼ࣍εςοϓʹ͏ͷΛܾΊΔɽ ఏҊख๏ ॏཁͳύʔπ
Slide 10
Slide 10 text
• ͜ΕҎ߱ग़ͯ͘Δ εςοϓ1,2,...ʹରԠ͍ͯ͠Δ i ఏҊख๏ શମͷߏ
Slide 11
Slide 11 text
• • : աڈͷMͰΘΕ͍ͯΔ͔ʁʹΑͬͯ มΘΔॏΈ(࣮Ͱར༻੍ݶΈ͍ͨͳͷ) • Sparsemax: softmaxʹࣅͨ׆ੑԽؔ M[i] = sparsemax(P[i] ⋅ hi (a[i − 1])) P[i] ఏҊख๏ Attentive Transformer: ϚεΫͷֶशΛߦ͏ɽ
Slide 12
Slide 12 text
• SoftmaxΑΓૄʹͳΓ͍͢ ͔ΒɼॏཁͳಛྔΛऔΓग़ ͍͢͠ ίϥϜ SparseMax (Andre et al., 2016)
Slide 13
Slide 13 text
• ɼa࣍ͷεςοϓʹճ͞ΕΔ [d[i], a[i]] = fi (M[i] ⋅ f) ఏҊख๏ Feature Transformer: ೖྗΛม͠ɼ࣍ʹ͏ͷΛܾΊΔ
Slide 14
Slide 14 text
• ֤εςοϓ Λूܭ ͯ͠࠷ऴతͳ༧ଌʹ ༻͍Δ d[i] ఏҊख๏ ࠷ऴ༧ଌ
Slide 15
Slide 15 text
• ಛྔͷॏཁϚεΫΛͬͯܭࢉ͢Δ • ؆୯ʹܭࢉ͢ΔͨΊɼϚεΫͰͳ͘ಛྔΛ༻͍Δ ɹɹɹ ɹˠͲͷαϯϓϧ͕ॏཁ͔ʁ • → ಛྔͷॏཁ ηb [i] = Nd ∑ c ReLU(db,c [i]) Magg−b,j = ∑Ns teps i=1 ηb [i]Mb,j [i] ∑D j=1 ∑Nsteps i=1 ηb [i]Mb,j [i] ఏҊख๏ ղऍੑʹ͍ͭͯ
Slide 16
Slide 16 text
• Feature selection͕֤εςοϓʹରԠ ఏҊख๏ ಛྔબͷΠϝʔδ
Slide 17
Slide 17 text
• ֤ϚεΫʹΑͬͯ࡞ΒΕΔಛྔ͕ذʹରԠ͍ͯ͠Δɽ ఏҊख๏ Ͳ͕ܾ͜ఆΆ͍ͷʁ
Slide 18
Slide 18 text
• ର߅ख๏: • ޯϒʔεςΟϯάܥ: LightGBM, XGBoost, CatBoost • NNϞσϧ • ͳʹͰൺΔ͔ʁ • ςετσʔλʹର͢Δaccuracy • ϞσϧͷαΠζ ࣮ݧ ࣮ݧઃఆ
Slide 19
Slide 19 text
• ࣮σʔλ(ForestCoverType)Ͱର߅ख๏ΑΓਫ਼͕ྑ͔ͬͨɽ ࣮ݧ݁Ռ ਫ਼ʹؔͯ͠
Slide 20
Slide 20 text
• ϞσϧαΠζ͕ܰྔͰਫ਼͕͍͍ɽ ࣮ݧ݁Ռ ϞσϧαΠζʹؔͯ͠
Slide 21
Slide 21 text
࣮ݧ݁Ռ ղऍੑʹ͍ͭͯ • ͷ݁ՌΛՄࢹԽ • ߦ͕αϯϓϧɼྻ͕ಛྔ • ന͍ͱ͜Ζ͕ಛྔͱͯ͠ॏཁ ͱஅͨ͠ͱ͜Ζ ηb [i]
Slide 22
Slide 22 text
• ஞ࣍ҙΛߦ͏͜ͱͰɼॏཁͳಛྔબΛߦͳ͍ͬͯΔɽ • ϚεΫΛ༻͍Δ͜ͱͰղऍੑͷߴ͍Ϟσϧʹͳͬͨɽ • ༷ʑͳྖҬͷςʔϒϧσʔλͰੑೳΛൃشͰ͖Δ͜ͱΛࣔ͠ ͨɽ ·ͱΊ
Slide 23
Slide 23 text
• Accuracy: 0.81, ROC-AUC: 0.78 ͓·͚ TitanicσʔληοτͰTabNetΛ༡ΜͰΈͨɽ
Slide 24
Slide 24 text
͓·͚ LightGBM vs NN model vs TabNet LightGBM NN model • TabNet: Accuracy: 0.81, ROC-AUC: 0.78 https://github.com/mei28/playground_python/blob/main/notebooks/titanic.ipynb ϋΠύϥॳظͷ··Ͱ νϡʔχϯάΛߦͳ͍ͬͯͳ͍