×
Copy
Open
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
防災テックチャレンジ 2020 【12 ⾃由提案】 低コスト低信頼な水位計導入促進ための 異常検知システムの提案 hassaku
Slide 2
Slide 2 text
近年の河川氾濫の危険性増大や各自治体の人手不足を背景に 低コストなIoT水位計の需要が高まっている 将来:低コスト水位計が普及 現状:不十分かつ高コストな監視体制 背景
Slide 3
Slide 3 text
しかしながら、低コストが故の低信頼性が課題になり、 将来の低コスト水位計の普及を妨げることが想定される 背景
Slide 4
Slide 4 text
各水位計のデータ \ 異常発見! / そこで、低コスト水位計の普及促進に貢献することを目標として 異常がありそうな水位計を特定するための技術を試作した 提案内容
Slide 5
Slide 5 text
基本原理 時間 時間×地点数 地点数 ※事前確率、ハイパーパラメータの表示は省略 水位(観測) 流入出量 河川流量 川幅等係数 位置関係等係数 雨量 河川、水位、雨量の関係性をモデル化したグラフィカルモデル 異常検知のための基本的な仕組みとして 水位に関係しそうなデータを機械学習によりモデル化する手法を用いた 水位と雨量のデータから、各要素の関係性 を学習し、水位の正常・異常の区別をつけら れるようにすることが目標
Slide 6
Slide 6 text
技術検証のために東京都が公開している実際のデータを利用 水位データの計測間隔は10分毎 検証内容
Slide 7
Slide 7 text
妙正寺川沿いに設置された4箇所の水位計及び付近1箇所の雨量データを利用 水位4地点(三角印) 雨量1地点(星印) 4/1~5/31 4/1~5/31 検証内容
Slide 8
Slide 8 text
同じ川沿いの水位計同士は、相関関係をもちつつ、 雨量・川幅・位置関係等に応じた変化を示す 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 上高田上 落合上 ←上流 5/16 5/27 検証内容 鷺盛橋 妙正寺二上 点線:実際の水位 実線:水位計の数値
Slide 9
Slide 9 text
仮に1地点(鷺盛橋)の水位計が故障したとして 誤った水位データを記録する状況を想定(検証用に実データを加工) 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上 上高田上 落合上 ←上流 点線:実際の水位 実線:水位計の数値 5/16 5/29 5/27 検証内容 雨が降った時の実際の水位(点線)と 水位計の数値(実線)が合っていない!
Slide 10
Slide 10 text
時間 時間×地点数 地点数 ※事前確率、ハイパーパラメータの表示は省略 水位(観測) 流入出量 河川流量 川幅等係数 位置関係等係数 雨量 河川、水位、雨量の関係性をモデル化したグラフィカルモデル MCMC法によるパラメータ推定 河川流量 川幅等係数 流入出量 位置関係等係数 水位データの生成過程を、シンプルな階層ベイズモデルにて記述し、 MCMC法により各種パラメータを推定 検証内容
Slide 11
Slide 11 text
パラメータ推定したモデルを用いると、 観測するであろう水位を予測することが可能 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上 上高田上 落合上 ←上流 点線:実際の水位 青線:水位計の数値 赤線:予測水位 5/16 5/29 実際には水位が上昇しているのに、 故障によって、正しく計測出来ていない 検証内容 雨が降った時の実際の水位(点線)と 予測水位(赤線)がほぼ合っている
Slide 12
Slide 12 text
結果、予測した水位と実際の計測水位を比較するなどして 異常のありそうな水位計を特定することが可能となる 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上 上高田上 落合上 ←上流 棒線:予測水位と計測水位の差 5/16 5/29 検証内容 異常の可能性が一目瞭然
Slide 13
Slide 13 text
まとめ ● 低コスト水位計で懸念される低信頼性を担保するために、機械学習モデルによる 異常判別のための仕組みを提案 ● 実際の低コスト水位計や異常データに本手法を適用し、実用性を検証することが今 後の課題 ● また、更に大規模な河川ネットワークをモデル化し、水位計がない河川でも水位を ある程度推定出来るようにしたりして、年々増加する河川氾濫の防災に貢献してい きたい