Slide 45
Slide 45 text
Introduction
Introduction
Time Domain: A robust estimator of the ACF
Factor Analysis-Methodology
Factor Analysis - Simulation cases
Application
Conclusions
References
Chung, C. (2002), ‘Sample means, sample autocovariances, and linear regression of stationary multivariate long
memory processes’, Econometric Theory 18, 51–78.
Cotta, H. H. A., Reisen, V. A., Bondon, P., Stummer, W. & L´
evy-Leduc, C. (2017), Robust estimation of
covariance and correlation functions of a stationary multivariate process, in ‘to apper inSignal Processing
Conference (EUSIPCO), 2017 25rd European’, IEEE.
Fajardo, F., Reisen, V. A. & Cribari-Neto, F. (2009), ‘Robust estimation in long-memory processes under additive
outliers’, Journal of Statistical Planning and Inference 139, 2511–2525.
Hosking, J. R. (1996), ‘Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of
long-memory time series’, Journal of Econometrics 73(1), 261–284.
Lam, C. & Yao, Q. (2012), ‘Factor modeling for high-dimensional time series: Inference for the number of factors’,
Ann. Statist. 40(2), 694–726.
URL: http://dx.doi.org/10.1214/12-AOS970
Ma, Y. & Genton, M. G. (2000), ‘Highly robust estimation of the autocovariance function’, Journal of Time Series
Analysis 21(6), 663–684.
Pe˜
na, D. & Box, G. E. P. (1987), ‘Identifying a simplifying structure in time series’, Journal of the American
Statistical Association 82(399), pp. 836–843.
URL: http://www.jstor.org/stable/2288794
V. A. Reisen Factor Analysis on Time Series