Slide 1

Slide 1 text

Analysis and Application of PDEs with Random Parameters Bettina Schieche, Jens Lang Graduate School of Computational Engineering Numerical Analysis and Scientific Computing Technische Universit¨ at Darmstadt Numerical Analysis 2nd Workshop on Sparse Grids and Applications Munich, Germany, July 2-6, 2012 www.graduate-school-ce.de July 5, 2012

Slide 2

Slide 2 text

Outline Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Case Study: Uncertainty Quantification of Thermally Coupled Flow Adjoint Error Estimation Bettina Schieche — SGA 2012 — 2/29

Slide 3

Slide 3 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Case Study: Uncertainty Quantification of Thermally Coupled Flow Adjoint Error Estimation Bettina Schieche — SGA 2012 — 3/29

Slide 4

Slide 4 text

General Setting: Arbitrary PDE Describing parameters: Boundary and initial conditions Material properties Forcing terms / source terms Topology (geometry of the system) Bettina Schieche — SGA 2012 — 4/29

Slide 5

Slide 5 text

Sources of Uncertainties Natural fluctuations (e.g. speed of wind) Human-made fluctuations (e.g. fabrication processes) Lack of knowledge (e.g. spread of ash cloud) Lack of accuracy (e.g. errors of measurements) Bettina Schieche — SGA 2012 — 5/29

Slide 6

Slide 6 text

Sources of Uncertainties Natural fluctuations (e.g. speed of wind) Human-made fluctuations (e.g. fabrication processes) Lack of knowledge (e.g. spread of ash cloud) Lack of accuracy (e.g. errors of measurements) → PDE with additional dimensions: space, time + parameter space Vector of random variables ξ = (ξ1, . . . , ξM) Realizations of ξ: y Bettina Schieche — SGA 2012 — 5/29

Slide 7

Slide 7 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Case Study: Uncertainty Quantification of Thermally Coupled Flow Adjoint Error Estimation Bettina Schieche — SGA 2012 — 6/29

Slide 8

Slide 8 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid Bettina Schieche — SGA 2012 — 7/29

Slide 9

Slide 9 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P Bettina Schieche — SGA 2012 — 7/29

Slide 10

Slide 10 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P 3. Interpolate all solutions Bettina Schieche — SGA 2012 — 7/29

Slide 11

Slide 11 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics Bettina Schieche — SGA 2012 — 7/29

Slide 12

Slide 12 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — SGA 2012 — 7/29

Slide 13

Slide 13 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — SGA 2012 — 7/29

Slide 14

Slide 14 text

Adaptive Stochastic Collocation 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, y(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — SGA 2012 — 7/29

Slide 15

Slide 15 text

Algorithmic Details Nested collocation points: Gauss-Patterson, Clenshaw-Curtis Hierarchical global interpolation Dimension-adaptive refinement [Gerstner & Griebel ’03] with respect to stochastic Quantity of Interest (QoI) Stopping criterion: relative change of QoI < TOL Parallel function calls in each iteration PDE solver: MATLAB, KARDOS (FEM), FASTEST (FVM) Bettina Schieche — SGA 2012 — 8/29

Slide 16

Slide 16 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Case Study: Uncertainty Quantification of Thermally Coupled Flow Adjoint Error Estimation Bettina Schieche — SGA 2012 — 9/29

Slide 17

Slide 17 text

Thermally Coupled Flow: Boussinesq Equation ∂u ∂t + (u · ∇)u − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0, u = velocity p = pressure T = temperature Reynolds number P´ eclet number Froude number g = gravity acceleration vector Bettina Schieche — SGA 2012 — 10/29

Slide 18

Slide 18 text

Thermally Coupled Flow: Boussinesq Equation ∂u ∂t + (u · ∇)u − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0, u = velocity p = pressure T = temperature Reynolds number = 10 P´ eclet number = 20/3 Froude number = 1/150 g = gravity acceleration vector ↓ → [Evans, Paolucci ’90] Bettina Schieche — SGA 2012 — 10/29

Slide 19

Slide 19 text

Setting T(x1, 0, t, ξ) = 1 + σ M n=1 fn(x1)ξn Exponential covariance ξn independent, uniformly distributed Correlation length L = 5, 10, 20 ⇒ M = 9, 5, 3 Standard deviation σ = 0.125, 0.25, 0.5 Bettina Schieche — SGA 2012 — 11/29

Slide 20

Slide 20 text

Quantity of Interest: Nusselt Number Heat transfer at the horizontal walls Measured by Nusselt Numbers: Nubottom = 1 10(t1 − t0) t1 t0 bottom ∇T · n dS(x2) dt Bettina Schieche — SGA 2012 — 12/29

Slide 21

Slide 21 text

Deterministic Solution: Periodic Transverse Travelling Waves temperature contours 0 2 4 6 8 10 0 1 2 3 4 heat transfer Bettina Schieche — SGA 2012 — 13/29

Slide 22

Slide 22 text

Deterministic Solution: Periodic Transverse Travelling Waves temperature contours 0 2 4 6 8 10 0 1 2 3 4 heat transfer Bettina Schieche — SGA 2012 — 13/29

Slide 23

Slide 23 text

Deterministic Solution: Periodic Transverse Travelling Waves temperature contours 0 2 4 6 8 10 0 1 2 3 4 heat transfer Bettina Schieche — SGA 2012 — 13/29

Slide 24

Slide 24 text

Deterministic Solution: Periodic Transverse Travelling Waves temperature contours 0 2 4 6 8 10 0 1 2 3 4 heat transfer Bettina Schieche — SGA 2012 — 13/29

Slide 25

Slide 25 text

Deterministic Solution: Periodic Transverse Travelling Waves temperature contours 0 2 4 6 8 10 0 1 2 3 4 heat transfer Bettina Schieche — SGA 2012 — 13/29

Slide 26

Slide 26 text

Uncertainty Quantification with respect to the Standard Deviation σ 0.125 0.25 0.5 10−3 10−2 10−1 100 101 standard deviation σ |E[Nu]−Nu(deterministic)| L=20 L=10 L=5 → quadratic dependence 0.125 0.25 0.5 10−1 100 101 standard deviation σ standard deviation of Nu L=20 L=10 L=5 → linear dependence Bettina Schieche — SGA 2012 — 14/29

Slide 27

Slide 27 text

Uncertainty Quantification with respect to the Correlation Length L 5 10 20 10−3 10−2 10−1 100 101 correlation length L |E[Nu]−Nu(deterministic)| σ=0.5 σ=0.25 σ=0.125 5 10 20 10−1 100 101 correlation length L standard deviation of Nu σ=0.5 σ=0.25 σ=0.125 → small dependence Bettina Schieche — SGA 2012 — 15/29

Slide 28

Slide 28 text

Probability Density Functions L = 10 0 2 4 6 0 0.2 0.4 0.6 0.8 1 range of Nu σ=0.5 σ=0.25 σ=0.125 σ = 0.25 0 2 4 6 0 0.2 0.4 0.6 0.8 1 range of Nu L=20 L=10 L=5 Bettina Schieche — SGA 2012 — 16/29

Slide 29

Slide 29 text

Number of Used Collocation Points σ = 0.125 σ = 0.25 σ = 0.5 L = 5 59 59 163 L = 10 15 15 23 L = 20 11 11 19 Bettina Schieche — SGA 2012 — 17/29

Slide 30

Slide 30 text

Introduction of Further Uncertainties Heating condition: → 5 random variables (uniform distribution) Inflow velocity = Gaussian random field in time → 12 random variables Re: log-normal distribution Fr: normal distribution Pe: triangular distribution 20 random variables Bettina Schieche — SGA 2012 — 18/29

Slide 31

Slide 31 text

Introduction of Further Uncertainties Heating condition: → 5 random variables (uniform distribution) Inflow velocity = Gaussian random field in time → 12 random variables Re: log-normal distribution Fr: normal distribution Pe: triangular distribution 20 random variables Probability Density Function (63 Collocation Points) 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 range of Nu Bettina Schieche — SGA 2012 — 18/29

Slide 32

Slide 32 text

Introduction of a Random (Rough) Surface T = 0 (10,0) (0,0) (0,1) T = 1 bottom = 0 + 0.1 41 n=1 fn(x1)ξn Bettina Schieche — SGA 2012 — 19/29

Slide 33

Slide 33 text

Introduction of a Random (Rough) Surface T = 0 (10,0) (0,0) (0,1) T = 1 bottom = 0 + 0.1 41 n=1 fn(x1)ξn Exponential covariance Bettina Schieche — SGA 2012 — 19/29

Slide 34

Slide 34 text

Introduction of a Random (Rough) Surface T = 0 (10,0) (0,0) (0,1) T = 1 bottom = 0 + 0.1 41 n=1 fn(x1)ξn Exponential covariance Correlation length L = 1 Bettina Schieche — SGA 2012 — 19/29

Slide 35

Slide 35 text

Introduction of a Random (Rough) Surface T = 0 (10,0) (0,0) (0,1) T = 1 bottom = 0 + 0.1 41 n=1 fn(x1)ξn Exponential covariance Correlation length L = 1 ξn independent, uniformly distributed Bettina Schieche — SGA 2012 — 19/29

Slide 36

Slide 36 text

Introduction of a Random (Rough) Surface bottom = 0 + 0.1 41 n=1 fn(x1)ξn Exponential covariance Correlation length L = 1 ξn independent, uniformly distributed Probability Density Function (211 Collocation Points) 2 2.5 3 3.5 0 1 2 3 4 5 6 range of Nu Bettina Schieche — SGA 2012 — 19/29

Slide 37

Slide 37 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Case Study: Uncertainty Quantification of Thermally Coupled Flow Adjoint Error Estimation Bettina Schieche — SGA 2012 — 20/29

Slide 38

Slide 38 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic → [Xiu, Karniadakis ’03] Bettina Schieche — SGA 2012 — 21/29

Slide 39

Slide 39 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic α random field: α(x, ξ1, ξ2, ξ3) = E[α] + σ 3 n=1 fn(x)ξn E[α] = 1, σ = 0.2 Modified Bessel function as covariance ξn independent, uniformly distributed → [Xiu, Karniadakis ’03] Bettina Schieche — SGA 2012 — 21/29

Slide 40

Slide 40 text

Adaptive Stochastic Collocation: First Results Stochastic collocation approximation → Thξ Results at time t = 1: Expected Value Standard Deviation Bettina Schieche — SGA 2012 — 22/29

Slide 41

Slide 41 text

Adaptive Stochastic Collocation: First Results Stochastic collocation approximation → Thξ Results at time t = 1: Expected Value Standard Deviation (0, 0) Quantity of interest: Q(T) = Var[ 1 0 T|x=(0,0) dt] Aim: Q(T) − Q(Thξ ) ! < TOL = 10−3 Bettina Schieche — SGA 2012 — 22/29

Slide 42

Slide 42 text

Error Indicator versus Exact Error 1 2 3 4 5 10−4 10−3 10−2 10−1 100 P = 47 P = 31 adaptive stochastic collocation iterations relative error of Q indicator exact ⇒ More collocation points than necessary → TOL Bettina Schieche — SGA 2012 — 23/29

Slide 43

Slide 43 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Bettina Schieche — SGA 2012 — 24/29

Slide 44

Slide 44 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g(ξ) Bettina Schieche — SGA 2012 — 24/29

Slide 45

Slide 45 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g(ξ) Residual: Res(Thξ ) = f − A(Thξ ) Bettina Schieche — SGA 2012 — 24/29

Slide 46

Slide 46 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g(ξ) Residual: Res(Thξ ) = f − A(Thξ ) Error estimate: Q(T) − Q(Thξ ) = E[φRes(Thξ )] Bettina Schieche — SGA 2012 — 24/29

Slide 47

Slide 47 text

Deterministic versus stochastic error Joint error: Q(T) − Q(Thξ ) Deterministic error: Q(Tξ) − Q(Thξ ) Bettina Schieche — SGA 2012 — 25/29

Slide 48

Slide 48 text

Deterministic versus stochastic error Joint error: Q(T) − Q(Thξ ) Deterministic error: Q(Tξ) − Q(Thξ ) 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 number of adjoint collocation points error estimate / exact error deterministic error joint error ⇒ Much effort to capture stochastic error ⇒ Few effort to capture deterministic error Bettina Schieche — SGA 2012 — 25/29

Slide 49

Slide 49 text

Deterministic versus stochastic error Joint error: Q(T) − Q(Thξ ) Deterministic error: Q(Tξ) − Q(Thξ ) 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 number of adjoint collocation points error estimate / exact error deterministic error joint error ⇒ Much effort to capture stochastic error ⇒ Few effort to capture deterministic error Recall: 31 collocation points sufficient to reach TOL Bettina Schieche — SGA 2012 — 25/29

Slide 50

Slide 50 text

Idea: Order Reduction of Adjoint Problem Proper Orthogonal Decomposition (POD) 1. Adjoint solutions in a small set of collocation points: A∗(y(j))Φj = G, j = 1, . . . , P 2. Snapshot matrix S = (Φ1, · · · , ΦP) 3. Singular value decomposition of S → reduced basis ϕ 4. Galerkin projection onto ϕ: A∗ R (ξ)ΦR(ξ) = GR, dim(A∗ R ) dim(A∗) (1) 5. Evaluation of (1) in many adjoint collocation points Bettina Schieche — SGA 2012 — 26/29

Slide 51

Slide 51 text

Error Indicator versus Adjoint Error Estimator 1 2 3 4 5 10−4 10−3 10−2 10−1 100 P = 47 P = 31 adaptive stochastic collocation iterations relative error of Q indicator exact reduced adjoint ⇒ Reduced adjoints very close to exact error → TOL Bettina Schieche — SGA 2012 — 27/29

Slide 52

Slide 52 text

POD Modes of the Stochastic Adjoint Solution 1 2 3 4 5 6 7 8 9 Bettina Schieche — SGA 2012 — 28/29

Slide 53

Slide 53 text

Conclusion & Future Research Stochastic collocation is able to quantify uncertainties in PDEs. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. Bettina Schieche — SGA 2012 — 29/29

Slide 54

Slide 54 text

Conclusion & Future Research Stochastic collocation is able to quantify uncertainties in PDEs. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. ⇒ Order reduction of the primal problem ⇒ Adjoint error estimation of nonlinear problems Bettina Schieche — SGA 2012 — 29/29

Slide 55

Slide 55 text

Conclusion & Future Research Stochastic collocation is able to quantify uncertainties in PDEs. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. ⇒ Order reduction of the primal problem ⇒ Adjoint error estimation of nonlinear problems Thank You! Bettina Schieche — SGA 2012 — 29/29

Slide 56

Slide 56 text

Conclusion & Future Research Stochastic collocation is able to quantify uncertainties in PDEs. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. ⇒ Order reduction of the primal problem ⇒ Adjoint error estimation of nonlinear problems Thank You! This work is supported by the “Excellence Initiative“ of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt. Bettina Schieche — SGA 2012 — 29/29