Slide 1

Slide 1 text

IRUG 2013 – Beyond Data Review Raj Indupuri Chandi Kodthiwada

Slide 2

Slide 2 text

Why JReview Graphs? •Supports self-service analysis •Get data insights in near real-time for ongoing trials •Leverage drill-down capabilities to: • Visually make it easy to identify Outliers • Safety and Efficacy analysis •Reduce dependence on SAS Programmers •Overall increases speed and efficiencies for data review and analysis 2

Slide 3

Slide 3 text

Typical Analyses • Trends of Change from Baseline across visits • PK – PD Analysis • Shift Analysis • Abnormal changes from previous visit • Compare trends of multiple Efficacy and/or Safety parameters • Visit level or Treatment Group level review 3

Slide 4

Slide 4 text

Trends of Change from Baseline across visits 4 • Numeric Result – Post Baseline Visit – Y-axis • Baseline Result – X-axis • Visit Number (By variable)

Slide 5

Slide 5 text

PK – PD Analysis 5 • PK vs PD Parameters • PD Numeric result (Y-axis as Parameter) • PK Parameter Numeric Result (X- axis Parameter)

Slide 6

Slide 6 text

Shift Analysis 6 • Scatter Plot (w Numeric Reference Ranges) • Numeric result – Bicarbonate (Y-axis) • Numeric result – Amylase (X- axis)

Slide 7

Slide 7 text

Abnormal changes from previous visit 7 • Spaghetti Plots (Multiline ChartItem Value by Case) • Numeric result (Y-axis) • Visit Numbers (X-axis)

Slide 8

Slide 8 text

Compare trends of multiple Efficacy and/or Safety parameters 8 • Multi Item Trend Plots (Line Chart ItemSummary vs Category) • Numeric result (Y-axis) • Visit Numbers (X-axis) • Lab Test Name (By variable)

Slide 9

Slide 9 text

Visit level or Treatment Group level review 9 • Change of Mean of Test Result Plots (Mean+sStdDev vs Category) • Numeric result (Y-axis) • Visit Numbers (X-axis)

Slide 10

Slide 10 text

Thank you