Slide 1

Slide 1 text

Hellinger-Kantorovich (aka WFR) spaces and gradient flows Alexander Mielke Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin Institut für Mathematik, Humboldt-Universität zu Berlin www.wias-berlin.de/people/mielke/ Workshop on Optimal Transport: from Theory to Applications Interfacing Dynamical Systems, Optimization, and Machine Learning Humboldt-Universität zu Berlin, 11.–15. März 2024 Research partially supported by Berlin Mathematics Research Center

Slide 2

Slide 2 text

Joint work with Vaios Laschos Matthias Liero Giuseppe Savaré Jia-Jie Zhu • M-Zhu: Approximation, Kernelization, and Entropy-Dissipation of Gradient Flows: from Wasserstein to Fisher-Rao. In prep. (2024). https://jj-zhu.github.io/ • Laschos-M: EVI on the HK and the SHK spaces. arXiv:2207.09815v3 (2023). • Liero-M-Savaré: Fine prop. of geodesics and geodesic λ-convexity for the HK distance. Arch Rat Mech Analysis (2023). • Laschos-M: Geometric properties of cones with applications on the HK space, new distance prob. J Funct Analysis (2019) • Liero-M-Savaré:. Optimal entropy-transport problems and a new HK distance. Inventiones mathematicae (2018) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 2 (27)

Slide 3

Slide 3 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 4

Slide 4 text

1. Introduction: unbalanced transport Sequence of images or data sets: distinguish between motion/transport growhth/shape change birth/death of new objects A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 3 (27)

Slide 5

Slide 5 text

1. Introduction: unbalanced transport Sequence of images or data sets: distinguish between motion/transport growhth/shape change birth/death of new objects Cloud motion shows all of this: A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 3 (27)

Slide 6

Slide 6 text

1. Introduction: unbalanced transport Application closer to my research: reaction-diffusion system Hydrogen production and distribution transport = diffusion (in a pipeline) growth = chemical reactions 2 H2 0 2 H2 + 1 O2 . H2 O water from Ocean to Sahara ∂t ρH2O = div σ(∇ρH2O + ρH2O ∇V ) use solar power to produce hydrogen H2   ˙ ρH2O ˙ ρH2 ˙ ρO2   = κf (x)ρ2 H2O − κb(x)ρ2 H2 ρO2   −2 2 1   transport hydrogen to big cities ∂t ρH2 = div σ(∇ρH2 + ρH2 ∇V ) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 4 (27)

Slide 7

Slide 7 text

1. Introduction: unbalanced transport Liero-M’13: certain reaction-diffusion systems have a gradient structure vector of densities ρ = (ρ1, ..., ρn) ∈ [0, ∞[n Boltzmann entropy E(ρ) = X n i=1 λB ρi πi(x) πi(x) dx λB (r) = r log r − r + 1 ∂tρ = D∆ρ + R(ρ) = −KRDS(ρ)DE(ρ) Onsager operator (= inv. Riem. tensor) KRDS(ρ) = Kdiff(ρ) + Kreact(ρ) diffusion via Otto transport KOtto(ρ)ξ = − div(ρ∇ξ) growth (creation or annihilation) via reaction A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 5 (27)

Slide 8

Slide 8 text

1. Introduction: unbalanced transport Liero-M’13: certain reaction-diffusion systems have a gradient structure vector of densities ρ = (ρ1, ..., ρn) ∈ [0, ∞[n Boltzmann entropy E(ρ) = X n i=1 λB ρi πi(x) πi(x) dx λB (r) = r log r − r + 1 ∂tρ = D∆ρ + R(ρ) = −KRDS(ρ)DE(ρ) Onsager operator (= inv. Riem. tensor) KRDS(ρ) = Kdiff(ρ) + Kreact(ρ) diffusion via Otto transport KOtto(ρ)ξ = − div(ρ∇ξ) growth (creation or annihilation) via reaction Today, only the scalar case n = 1: Kα,β(ρ)ξ = α KOtto(ρ)ξ for diffusion + β Kreact(ρ)ξ for growth = −α div(ρ∇ξ) + βρξ A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 5 (27)

Slide 9

Slide 9 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 10

Slide 10 text

2. “Hellinger” versus “Fisher-Rao” The Hellinger-Kantorovich distance was introduced independently and named Wasserstein-Fisher-Rao distance WFR(µ0, µ1) French group: Chizat, Peyré, Schmitzer, Vialard: An interpolating distance be- tween optimal transport and Fisher–Rao metrics. Found Comput Math (2015) Chizat, Peyré, Schmitzer, Vialard: Unbalanced optimal transport: geometry and Kantorovich formulation. J Funct Analysis (2018) Portugese group: Kondratyev, Monsaingeon, Vorotnikov: A new optimal transport dis- tance on the space of finite Radon measures. Adv Diff Eqns (2016). Gallouët, Monsaingeon: A JKO splitting scheme for Kantovorich-Fisher-Rao gradient flows. SIAM Math Analysis (2017) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 6 (27)

Slide 11

Slide 11 text

2. “Hellinger” versus “Fisher-Rao” Hellinger: dissertation [Hell1907] and habilitation [Hell1909] introduce integrals of the type b a u(t)df1df2 dg for functions u, f1, f2, g, g ∈ C0([a, b]) where additionally g and h are increasing and (dfj)2 ≤ dg dg. Kakutani in [Kak’48] uses the Radon-Nikodým derivative, to define the so-called Hellinger integral h(ν0, ν1) = Ω ν0(dω)ν1(dω) and defines what is nowadays called the Hellinger distance He(ν0, ν1) = 2−2h(ν0, ν1) 1/2 = Ω dν0 dg − dν1 dg 2 dg for µ, ν ∈ P(Ω). With this, (M(Ω), He) is a geodesic metric space, but not (P(Ω), He). • 1955→ “Hellinger distance” is consistently used (MathSciNet 630 hits) • [Rao’63] explicitly introduces the Hellinger integral and distance A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 7 (27)

Slide 12

Slide 12 text

2. “Hellinger” versus “Fisher-Rao” Fisher-Rao distance originates from [Rao’45] using the “Fisher information metric” [Fis1921] (finite-dimensional) parameter manifold Θ and function p : Θ → P(Ω) defines parametrized family µ = p(·, θ) ∈ P(Ω) θ ⊂ Θ Fisher’s information matrix = Riemannian metric tensor on TΘ: GFi(θ)v1, v2 = Ω Dθ(log p(ω, θ) [v1] Dθ(log p(ω, θ) [v2] p(dω, θ), for v1, v2 ∈ TθΘ. [Rao’45] defines the so-called Fisher-Rao distance as the geodesic distance dFR : Θ×Θ → [0, ∞[ induced by the Riemannian tensor GFi . A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 8 (27)

Slide 13

Slide 13 text

2. “Hellinger” versus “Fisher-Rao” Taking Θ = P(Ω) itself with µ = p(µ) one obtains indeed, as a special case of Fisher’s information metric, the infinitesimal metric GHe(µ)v1, v2 = Ω dv1 dµ dv2 dµ dµ = Ω dv1dv2 dµ (as in [Hell1905]) The induced geodesic distance on M(Ω) is given by 1 2 He(µ0, µ1) The induced geodesic distance on P(Ω) is Bhattacharya’s distance [Bha35] Bh(ν0, ν1) = 2 arcsin 1 2 He(ν0, ν1) ν∈P(Ω) ν √ ν √ ν∈Sn √ ν0 √ ν1 He(ν0, ν1) Bh(ν0, ν1) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 9 (27)

Slide 14

Slide 14 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 15

Slide 15 text

3. Geodesics for the Hellinger-Kantorovich distance α ≥ 0 and β ≥ 0 interpolate between pure Hellinger distance He = H K0,4 (i.e. (α, β) = (0, 4)) pure Kantorovich-Wasserstein distance W = H K1,0 (i.e. (α, β) = (1, 0)) More general, we have H Kα,0 = 1 √ α W and H K0,β = 2 √ β He. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 10 (27)

Slide 16

Slide 16 text

3. Geodesics for the Hellinger-Kantorovich distance α ≥ 0 and β ≥ 0 interpolate between pure Hellinger distance He = H K0,4 (i.e. (α, β) = (0, 4)) pure Kantorovich-Wasserstein distance W = H K1,0 (i.e. (α, β) = (1, 0)) More general, we have H Kα,0 = 1 √ α W and H K0,β = 2 √ β He. In general, H Kα,β is defined via the dynamic Benamou-Brenier formulation (for RDS in Liero-M’13) H Kα,β(µ0, µ1)2 := inf 1 0 X α|∇ξs|2+βξ2 s µs(dx) ds µ0 = µ0, µ1 = µ1, s → (µs, ξs) solves (gCE) α,β , where (gCE) α,β ∂sµs + div α∇ξsµs = βξsµs in the sense of distributions. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 10 (27)

Slide 17

Slide 17 text

3. Geodesics for the Hellinger-Kantorovich distance Any minimizer s → µs is called a (constant-speed) geodesic. Equations for geodesics (justified in [LiMiSa18OETP,LiMiSa23FPGG]) ∂sµs + div α∇ξsµs = βξsµs, ∂sξs + α 2 |∇ξs|2 + β 2 ξ2 s = 0. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 11 (27)

Slide 18

Slide 18 text

3. Geodesics for the Hellinger-Kantorovich distance Any minimizer s → µs is called a (constant-speed) geodesic. Equations for geodesics (justified in [LiMiSa18OETP,LiMiSa23FPGG]) ∂sµs + div α∇ξsµs = βξsµs, ∂sξs + α 2 |∇ξs|2 + β 2 ξ2 s = 0. The second equation gives ξt = Pα,β t−s ξs) for 0 < s < t < 1, where Pα,β τ η (x) = inf 2 βτ 1 − cos β/(4α)|x−y| 1 + τ β/2 η(y) |x−y| ≤ π α β . One can check that the formal limits α → 0 and β → 0 recover the classical cases corresponding to H Kα,0 = 1 √ α W and H K0,β = 2 √ β He. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 11 (27)

Slide 19

Slide 19 text

3. Geodesics for the Hellinger-Kantorovich distance Remarkable fact: transport only occurs over distances ≤ ∗ = π α/β In general, geodesic curves between µ0, µ1 ∈ M(X) consists of three pieces: • A0 : mass of µ0 located further from sppt(µ1) than ∗ is annihilated, • A1 : mass of µ1 located further from sppt(µ0) than ∗ is created, • Atra : mass of µ0 located less than ∗ from sppt(µ1) is transported but again with changing mass along the way. Transport over a distance of exactly ∗ is more difficult, in particular non-uniqueness of geodesics may happen. sppt µ1 A1 sppt µ0 A0 ∗ ∗ Atra A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 12 (27)

Slide 20

Slide 20 text

3. Geodesics for the Hellinger-Kantorovich distance sppt µ1 A1 sppt µ0 A0 ∗ ∗ Atra A0 = x ∈ sppt µ0 dist(x, sppt µ1) > ∗ A1 = x ∈ sppt µ1 dist(x, sppt µ0) > ∗ Atra = x ∈ sppt µ0 dist(x, sppt µ1) < ∗ geodesic: µs = (1−s)2µ0|A0 + Ts # q2 s µ0|Atra + s2µ1|A1 with growth factor q2 s (x) = 1+s β 4 ξ0(x) 2 + αβ 4 s2 |∇ξ0(x)|2 and transport map Ts(x) = x + 4α β arctan s √ αβ 2+sβξ0(x) ∇ξ0(x) . Observe that • β = 0 gives qs ≡ 1 and Ts(x) = x + αs∇ξ0(x) and • α = 0 gives qs = (1+sβξ0/4)2 and Ts(x) = x A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 13 (27)

Slide 21

Slide 21 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 22

Slide 22 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) E : M(X) → R∞ is geod. Λ-convex, where Λ ∈ R, iff along cs-geodesics E(µs) ≤ (1−s)E(µ0) + s E(µ1) − Λ s−s2 2 H Kα,β(µ0, µ1)2 for s ∈ [0, 1]. The total mass functional is exact quadratic µs(X) = (1−s)µ0(X) + s µ1(X) − β 2 s−s2 2 H Kα,β(µ0, µ1)2, i.e. µ → aµ(X) is (aβ/2)-convex for all a ∈ R. Linear functional µ → X V (x)µ(dx) are geod. Λ-cvx iff (cf. [LiMSa16]) αD2V (x)+β 2 V (x) αβ/4 ∇V (x) αβ/4 ∇V (x) β 2 V (x) ≥ Λ Id+1 in R(d+1)×(d+1). A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 14 (27)

Slide 23

Slide 23 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) Internal energies E(µ) = X E(ρ) dx + E∞ µ⊥ with µ = ρL + µ⊥, L ⊥ µ⊥ Theorem (Necessary & sufficient conditions for αβ > 0) [LiMSa23] E defined by E : [0, ∞[ → R∞ is geodesic Λ-convex on M(X), H Kα,β) iff the auxiliary function NE(γ, δ) = (δ/γ)dE γ2+d/δd satisfies (a) (γ, δ) → NE(γ, δ) − 2Λ β γ2 is convex, (b) δ → (d−1) NE(γ, δ) is non-decreasing. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 15 (27)

Slide 24

Slide 24 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) Internal energies E(µ) = X E(ρ) dx + E∞ µ⊥ with µ = ρL + µ⊥, L ⊥ µ⊥ Theorem (Necessary & sufficient conditions for αβ > 0) [LiMSa23] E defined by E : [0, ∞[ → R∞ is geodesic Λ-convex on M(X), H Kα,β) iff the auxiliary function NE(γ, δ) = (δ/γ)dE γ2+d/δd satisfies (a) (γ, δ) → NE(γ, δ) − 2Λ β γ2 is convex, (b) δ → (d−1) NE(γ, δ) is non-decreasing. • Reducing the conditions to γ ≡ 1, one obtains McCann’s condition for geodesic convexity in (M(X), W). • Reducing to δ ≡ 1 gives the conditions for geodesic Hellinger convexity. • However, the joint condition is strictly stronger, see below. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 15 (27)

Slide 25

Slide 25 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) Internal energies E(µ) = X E(ρ) dx + E∞ µ⊥ with µ = ρL + µ⊥, L ⊥ µ⊥ Theorem (Necessary & sufficient conditions for αβ > 0) [LiMSa23] E defined by E : [0, ∞[ → R∞ is geodesic Λ-convex on M(X), H Kα,β) iff the auxiliary function NE(γ, δ) = (δ/γ)dE γ2+d/δd satisfies (a) (γ, δ) → NE(γ, δ) − 2Λ β γ2 is convex, (b) δ → (d−1) NE(γ, δ) is non-decreasing. • Multiples of the mass functional Ma(ρ) = aρ give NMa (γ, δ) = aγ2. Hence, adding Ma shifts Λ-convexity exactly by aβ/2. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 15 (27)

Slide 26

Slide 26 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) Internal energies E(µ) = X E(ρ) dx + E∞ µ⊥ with µ = ρL + µ⊥, L ⊥ µ⊥ Theorem (Necessary & sufficient conditions for αβ > 0) [LiMSa23] E defined by E : [0, ∞[ → R∞ is geodesic Λ-convex on M(X), H Kα,β) iff the auxiliary function NE(γ, δ) = (δ/γ)dE γ2+d/δd satisfies (a) (γ, δ) → NE(γ, δ) − 2Λ β γ2 is convex, (b) δ → (d−1) NE(γ, δ) is non-decreasing. Examples for α > 0 and β > 0: E(ρ) = ρm with m > 1 giving Λ = 0 and E(ρ) = aρ gives Λ = aβ/2 Boltzmann entropy E(ρ) = ρ log ρ not geod. Λ convex for any Λ ∈ R. E(ρ) = −ρθ is geod. convex (with Λ = 0) iff θ ∈ d/(d+2), 1/2 . restriction to d = 1 or 2. McCann’s condition needs θ ≥ (d−1)/d, Hellinger convexity needs θ ≤ 1/2. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 15 (27)

Slide 27

Slide 27 text

4. Geodesic Λ-convexity on (M(X), H Kα,β ) Main idea of proof: establish enough regularity of the geodesic curves reduce to the pure transport part reduce to the case with Lebesgue densities rewrite transport part of the geodesics in the form µs = ρs(x)dx with ρs(Ts(x)) = ρ0(x)qs(x)2/ det DTs(x) Then, set γs = ρ0(x)1/2qs and δs = ρ0(x)1/2qs(det DTs(x))1/d to obtain E(µs )= Ts(Atra) E(ρs (y)) dy = Atra E ρ0 (x)qs (x)2 det DTs (x) det DTs (x) dx = Atra NE γs (x), δs (x) dx. Using prop. (a) and (b) of NE and explicit represent. of qs and Ts , the result follows via some lengthy and nontrivial computations. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 16 (27)

Slide 28

Slide 28 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 29

Slide 29 text

5. Reaction-diffusion equations as gradient flows Onsager operators for H Kα,β on M(X) and SH Kα,β on P(X) are given by K α,β H K (µ)ξ = −α div(µ∇ξ) + βµξ K α,β SH K (ν)ξ = −α div(ν∇ξ) + βν ξ− X ξ dν [keeps mass constraint X dν = 1 ] For functionals E(µ) = X E(ρ)−ρV dx the induced reaction-diffusion equations take the form ∂tρ = α div ρ∇(E (ρ)−V ) − βρ (E (ρ)−V ) + δSH Kβρ X ρ (E (ρ)−V ) dx, with δS H K = 0 for H K and δS H K = 1 for SH K. Existence of weak solutions: [GalMon17JKOS,GaLaMo19UOTS, DimChi20TGMH, Flei21MMAC, ...] A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 17 (27)

Slide 30

Slide 30 text

5. Reaction-diffusion equations as gradient flows Choose V ≡ 0 and E(ρ) = 2 3 − ρ1/2 + 1 3 ρ3/2 and initial datum µ(0) = 0. We obtain the PDE ∂tρ = ∆ 1 2 ρ1/2 + 1 6 ρ3/2 + 2 ρ1/2 − ρ3/2 in X, ∇ρ · n = 0 on ∂X. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 18 (27)

Slide 31

Slide 31 text

5. Reaction-diffusion equations as gradient flows Choose V ≡ 0 and E(ρ) = 2 3 − ρ1/2 + 1 3 ρ3/2 and initial datum µ(0) = 0. We obtain the PDE ∂tρ = ∆ 1 2 ρ1/2 + 1 6 ρ3/2 + 2 ρ1/2 − ρ3/2 in X, ∇ρ · n = 0 on ∂X. It is easily seen that there are multiple solutions with µ(0) = 0, namely µζ(t) = 0 for t ∈ [0, T] and µζ(t) = tanh(t−ζ) 2 for t ≥ ζ. Thus, for weak solutions we indeed have non-uniqueness. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 18 (27)

Slide 32

Slide 32 text

5. Reaction-diffusion equations as gradient flows Energy-dissipation estimates (ongoing joint work with JJ Zhu) • E0 = infρ∈M(X) E(ρ) = 0, using E(ρ) = ρ1/2+2 3 (ρ1/2−1)2 ≥ 0, E(1) = 0. • π ≡ 1 is the unique minimizer of E. − d dt E(ρ) = − X E (ρ)∂tρ dx = − E (ρ), Kα,β(ρ)E (ρ) = α X ρ ∇E (ρ)|2 ≥0 dx + β X ρ|E (ρ)|2 ≥3 8 E(ρ) dx ≥ 3β 8 E(ρ) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 19 (27)

Slide 33

Slide 33 text

5. Reaction-diffusion equations as gradient flows Energy-dissipation estimates (ongoing joint work with JJ Zhu) • E0 = infρ∈M(X) E(ρ) = 0, using E(ρ) = ρ1/2+2 3 (ρ1/2−1)2 ≥ 0, E(1) = 0. • π ≡ 1 is the unique minimizer of E. − d dt E(ρ) = − X E (ρ)∂tρ dx = − E (ρ), Kα,β(ρ)E (ρ) = α X ρ ∇E (ρ)|2 ≥0 dx + β X ρ|E (ρ)|2 ≥3 8 E(ρ) dx ≥ 3β 8 E(ρ) We conclude E(ρ(t)) ≤ e−3βt/8E(ρ(0)) for all(???) ρ(0) ∈ M(X) This cannot hold for all weak solutions!! A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 19 (27)

Slide 34

Slide 34 text

5. Reaction-diffusion equations as gradient flows Up(r) = rp−pr+p−1 p(p−1) on M(X): p-divergences Dp(ρ µ) = X Up dρ dµ dµ U1(r) = r log r − r+1 U0(r) = r−1− log r cp = inf rUp (r)2 Up(r) r > 0 = 1/(1−p) for p ≤ 1/2, 0 for p > 1/2. Theorem [M-Zhu’24?] Assume p ≤ 1/2 and Dp(ρ0 π) < ∞. Then, all curves of maximal slope t → ρ(t) for teh grad.-flow equation ∂tρ = −Kα,β(ρ)DρDp(ρ π), ρ(0) = ρ0 satisfy the decay estimate Dp(ρ(t) π) ≤ e−cpβtDp(ρ0 π). see https://jj-zhu.github.io/ Open problem: Interaction of Log-Sobolev inequal. (α>0) and Hellinger estimates (β>0) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 20 (27)

Slide 35

Slide 35 text

5. Reaction-diffusion equations as gradient flows Main observation: ρ(t) = 0 is a curve of maximal slope if and only if ∂Dp(0 π) α,β = 0 A calculation gives ∂Dp(0 π) α,β := lim sup H K(0,ρ)→0 Dp(0 π)−Dp(ρ π) H Kα,β(0, µ) =        0 for p > 1/2, 2 β|X| for p = 1/2, ∞ for p < 1/2. For π = 1 dx, one can use the relations • H Kα,β(0, ρ) = 2 √ β He(0, ρ) = 2 √ β ρ(X)1/2. • Dp(0 1) − Dp(ρ 1) = X ρp−pρ p(1−p) dx, especially D1/2 (ρ π) = 2He(ρ, π)2 A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 21 (27)

Slide 36

Slide 36 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 37

Slide 37 text

6. EVIλ flows in (M(X), H Kα,β ) Uniqueness of solutions can be obtained via Evolutionary Variational Inequalities (EVI) Definition of EVI solutions [AmGiSa05, MurSav20, MurSav24?] • Metric gradient systems (M, E, D) • (M, D) is a geodesic space and E is geodesically Λ-convex A curve u : [0, ∞[ → M is called EVIΛ -solution if it satisfies 1 2 d dt D(u(t), w)2+ Λ 2 D(u(t), w)2 ≤ E(w)−E(u(t)) for all w ∈ dom(E). Important consequence: Uniqueness and Lipschitz continuity D(u(t), u(t)) ≤ e−Λ(t−s)D(u(s), u(s)) for 0 ≤ s < t. However, existence theory for EVI solutions highly nontrivial, cf. [MurSav24?] A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 22 (27)

Slide 38

Slide 38 text

6. EVIλ flows in (M(X), H Kα,β ) Combining results from [LaschosM19] and from [MurSav24?] one obtains: Theorem [LaschosM arXiv23] If E(µ) = X E(dµ/dx) dx is geodesically Λ-convex on (M(X), H Kα,β), then there is a global EVIΛ flow on dom(E)H K . A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 23 (27)

Slide 39

Slide 39 text

6. EVIλ flows in (M(X), H Kα,β ) Combining results from [LaschosM19] and from [MurSav24?] one obtains: Theorem [LaschosM arXiv23] If E(µ) = X E(dµ/dx) dx is geodesically Λ-convex on (M(X), H Kα,β), then there is a global EVIΛ flow on dom(E)H K . Corollary. ρ(t) = tanh(t)2 is the unique EVI solution (and curve of maximal slope) for the gradient system (M(X), E, H K1,4) for E(ρ) = 2 3 − ρ1/2 + 1 3 ρ3/2 and initial datum ρ0 = 0. In contrast, the PDE ∂tρ = ∆ 1 2 ρ1/2 + 1 6 ρ3/2 + 2 ρ1/2 − ρ3/2 in X, ∇ρ · n = 0 on ∂X. has many weak solutions. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 23 (27)

Slide 40

Slide 40 text

6. EVIλ flows in (M(X), H Kα,β ) Ideas of the proof: [MurSav24?] new theory relies on the so-called local-angle condition and K-concavity of the squared norm norm u → 1 2 D(w, u)2. This approach was extended in [LasMie22?EVIH] based on previous results in [LasMie19GPCA] on K-concavity on suitable subsets of M(X), where measures have densities with upper and lower bounds. A general existence result for EVIλ flows in (M(X), H Kα,β) was obtained, by constructing solutions via the minimizing movement scheme, such that lower and upper bounds for the densities propagate and K-concavity can be exploited at least on finite time horizons. By density and the Λ-contraction property of EVI flows, these results lead to global EVI flows. A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 24 (27)

Slide 41

Slide 41 text

Overview 1. Introduction: unbalanced transport 2. “Hellinger” versus “Fisher-Rao” 3. Geodesics for the Hellinger-Kantorovich distance 4. Geodesic Λ-convexity on (M(X), H Kα,β) 5. Reaction-diffusion equations as gradient flows 6. EVIλ flows in (M(X), H Kα,β) 7. EVIλ flows in (P(X), SH Kα,β) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024

Slide 42

Slide 42 text

7. EVIλ flows in (P(X), SH Kα,β ) Restriction of H Kα,β to the probability measures P(X) gives a metric space, but not a geodesic space. M(X) P(X) M(X) P(X) H K geodesic SH K geodesic A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 25 (27)

Slide 43

Slide 43 text

7. EVIλ flows in (P(X), SH Kα,β ) Restriction of H Kα,β to the probability measures P(X) gives a metric space, but not a geodesic space. M(X) P(X) M(X) P(X) H K geodesic SH K geodesic (P(X), SH Kα,β) is geodesic if the spherical H K distance is defined via SH Kα,β(ν0, ν1) := 2 arcsin √ β 4 H Kα,β(ν0, ν1) ∈ [0, π/2]. The Onsager operator (inverse Riemannian tensor) for ν ∈ P(X) reads KSH Kα,β (ν)ξ = −α div ν∇ξ + β ν ξ − X νξ dx A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 25 (27)

Slide 44

Slide 44 text

7. EVIλ flows in (P(X), SH Kα,β ) Fundamental is the following scaling relation: H Kα,β(r2 0 µ0, r2 1 µ1)2 = = r0r1H Kα,β(r0µ0, r1µ1)2 + 4 β (r2 0 − r0r1)µ0(X) + (r2 1 − r0r1)µ1(X) , • (M(X), H Kα,β) is a metric cone over (P(X), SH Kα,β) • explicit geodesics s → νSH K(s) = n(s)µH K(σ(s)), where n(s) and σ(s) are explicitly given in [LaschosM19]. µH K(t) νS H K(s) EVI-flow theory on (P(X), E, SH Kα,β) works as in the H K case caveat: geodesic Λ-convexity on (P(X), SH Kα,β) largely unknown. only positive result µ → X (−ρ)θ dx with θ ∈ d/(d+2), 1/2 A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 26 (27)

Slide 45

Slide 45 text

Conclusion H Kα,β allows for gradient flows with unbalanced transport Geodesics and distance for H K and SH K can be characterized explicity Geodesic Λ-convexity for H K is understood, but not for SH K. EVIΛ flows for can be constructed in “good” cases, but many important cases are not Λ-convex Functional inequalities need more research Working on M(X) includes µ = 0 which may be degenerate A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 27 (27)

Slide 46

Slide 46 text

Conclusion H Kα,β allows for gradient flows with unbalanced transport Geodesics and distance for H K and SH K can be characterized explicity Geodesic Λ-convexity for H K is understood, but not for SH K. EVIΛ flows for can be constructed in “good” cases, but many important cases are not Λ-convex Functional inequalities need more research Working on M(X) includes µ = 0 which may be degenerate Thank you for your attention • M-Zhu: Approximation, Kernelization, and Entropy-Dissipation of Gradient Flows: from Wasserstein to Fisher-Rao. In prep. (2024). https://jj-zhu.github.io/ • M: An Introduction to the Analysis of Gradient Systems. Lecture Course (2022/23) arXiv2306.05026. • Laschos-M: EVI on the HK and the SHK spaces. arXiv:2207.09815v3 (2023). • Liero-M-Savaré: Fine prop. of geodesics and geodesic λ-convexity for the HK distance. Arch Rat Mech Ana (2023). • Laschos-M: Geometric properties of cones with applications on the HK space, new distance prob. J Funct Ana (2019) • Liero-M-Savaré:. Optimal entropy-transport problems and a new HK distance. Inventiones mathematicae (2018) A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 27 (27)