Slide 16
Slide 16 text
3. Geodesics for the Hellinger-Kantorovich distance
α ≥ 0 and β ≥ 0 interpolate between
pure Hellinger distance He = H
K0,4 (i.e. (α, β) = (0, 4))
pure Kantorovich-Wasserstein distance W = H
K1,0 (i.e. (α, β) = (1, 0))
More general, we have H
Kα,0 = 1
√
α
W and H
K0,β = 2
√
β
He.
In general, H
Kα,β
is defined via the dynamic Benamou-Brenier formulation
(for RDS in Liero-M’13)
H
Kα,β(µ0, µ1)2 := inf
1
0 X
α|∇ξs|2+βξ2
s
µs(dx) ds
µ0 = µ0, µ1 = µ1, s → (µs, ξs) solves (gCE)
α,β
,
where
(gCE)
α,β
∂sµs + div α∇ξsµs = βξsµs
in the sense of distributions.
A. Mielke, HK spaces and gradient flows, Berlin, 11 März 2024 10 (27)