Slide 1

Slide 1 text

TIDAL STREAMS in Triaxial Systems Columbia University adrian price-whelan

Slide 2

Slide 2 text

Modeling streams in arbitrary potentials Chaos and tidal streams 2) 1)

Slide 3

Slide 3 text

What we [think we] know about dark matter halos

Slide 4

Slide 4 text

Via Lactea 2 simulation simulated halos are triaxial

Slide 5

Slide 5 text

0.2 0.4 0.6 0.8 1.0 0.0 Jing & Suto (2002) (c/a) 0.6 0.8 1.0 0.4 (b/a) 0.5<(c/a)<0.6 minor/major intermediate/major

Slide 6

Slide 6 text

pdf 6 ⇥ 1011 < M/M < 2 ⇥ 1012 0.2 0.4 0.6 0.8 1.0 0.0 Schneider et al. (2012) (c/a) (b/a)

Slide 7

Slide 7 text

(c/a) ~ 0.6 (b/a) ~ 0.8 NFW ✓ For Milky Way mass halos…

Slide 8

Slide 8 text

what about REAL LIFE

Slide 9

Slide 9 text

Weak lensing Constraint on mean projected halo ellipticity van Uitert et al. (2012) eh ⇡ 0.4 ± 0.25 (c/a) proj = 0.6 ± 0.25

Slide 10

Slide 10 text

Diego et al. (2014) (c/a) ~ 0.55 Strong lensing

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

Sag. Orphan Pal 5

Slide 13

Slide 13 text

Tidal streams are sensitive to internal progenitor dynamics and the potential in which they form

Slide 14

Slide 14 text

Results from the Sagittarius stream: Newberg et al. 2007 Law & Majewski 2010 Ibata et al. 2013 Deg & Widrow 2013 Ibata et al. 2001 spherical Johnston et al. 2005 Vera-Ciro & Helmi 2013 oblate spherical triaxial maybe still spherical oblate → triaxial triaxial

Slide 15

Slide 15 text

How do streams form?

Slide 16

Slide 16 text

rtide ⇠ f ✓ m Menc ◆1/3 R f ⇠ O(1) m2 << m1 R

Slide 17

Slide 17 text

potential center L1 L2

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

Tidal disruption is simple

Slide 20

Slide 20 text

How should we fit stream data? With a generative model

Slide 21

Slide 21 text

progenitor Lagrange points progenitor orbit potential center Streakline Küpper et al. (2012)

Slide 22

Slide 22 text

t = 0 Streakline Küpper et al. (2012)

Slide 23

Slide 23 text

t = 1 Streakline Küpper et al. (2012)

Slide 24

Slide 24 text

t = 2 Streakline Küpper et al. (2012)

Slide 25

Slide 25 text

t = 3 Streakline Küpper et al. (2012)

Slide 26

Slide 26 text

model stream observed stars Streakline

Slide 27

Slide 27 text

Streakline

Slide 28

Slide 28 text

Rewinder

Slide 29

Slide 29 text

t = 0 Price-Whelan et al. (2014) Rewinder

Slide 30

Slide 30 text

Rewinder Price-Whelan et al. (2014) t = -1 evaluate likelihood

Slide 31

Slide 31 text

Rewinder Price-Whelan et al. (2014) t = -2 evaluate likelihood

Slide 32

Slide 32 text

Rewinder Price-Whelan et al. (2014) t = -3

Slide 33

Slide 33 text

ith star orbit progenitor orbit potential unbinding time velocity dispersion ~tidal radius leading/ trailing Price-Whelan et al. (2014) p(wi | wp, ✓p, ⌧i, ) progenitor internals {N(ri | rp ± rtide ˆ rp, r)|⌧i N(vi | vp, v)|⌧i

Slide 34

Slide 34 text

⌧ub K unbinding time leading/trailing tail M mass today any parametrization per star progenitor potential marginalize out Rewinder model parameters

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

⌧ub K unbinding time leading/trailing tail M mass today any parametrization per star progenitor potential (l, b, d, µl, µb, vr) (l, b, d, µl, µb, vr) marginalize out WE’RE HOSED Rewinder Price-Whelan et al. (2014)

Slide 38

Slide 38 text

Nparams / 6Nstars

Slide 39

Slide 39 text

50 −100 −50 0 50 X [kpc] −100 −50 0 50 X [kpc] x z y Potential: Miyamoto-Nagai disk + Hernquist spheroid + Triaxial, log. halo (q1, qz, , vh, rh) Price-Whelan et al. (2014)

Slide 40

Slide 40 text

−100 −50 0 50 X [kpc] −100 −50 0 X [kpc] x “Data”: Price-Whelan et al. (2014) 8 “RR Lyrae” stars Gaia velocity errors 2% distance errors + Progenitor, same errors

Slide 41

Slide 41 text

8 RR Lyrae stars Gaia velocity errors 2% distance error Price-Whelan et al. (2014)

Slide 42

Slide 42 text

Price-Whelan et al. (2014) 8 RR Lyrae stars 2% distance errors No proper motions

Slide 43

Slide 43 text

Price-Whelan et al. (2014) Recover unobserved proper motion for stars

Slide 44

Slide 44 text

Next Marginalize true phase-space positions of the stars Marginal likelihood has fixed dimensionality set by potential params., progenitor params Price-Whelan et al. (in prep.)

Slide 45

Slide 45 text

Nparams / 6Nstars Good: Bad: - test particle orbits (no N-body) - arbitrary potentials - observational uncertainties / missing data - less sensitive to observational biases

Slide 46

Slide 46 text

Tidal streams are sensitive to the Milky Way potential at large scales When modeling streams, must use a probabilistic model, e.g. Rewinder SMHASH will measure precise distances to stars in Sgr & Orphan streams

Slide 47

Slide 47 text

Chaos and tidal streams 2)

Slide 48

Slide 48 text

Mean density of streams evolves faster relative to spherical/oblate Chaos may become important, mixing can reduce density in streams In triaxial potentials:

Slide 49

Slide 49 text

For regular orbits: ˙ J = @H @✓ = 0 ˙ ✓ = @H @J = ⌦ ( x , v ) ! ( ✓ , J )

Slide 50

Slide 50 text

Angle-action coords.

Slide 51

Slide 51 text

Triaxial / 3 dof = 6D phase space = 3D torus embedded in Regular orbit:

Slide 52

Slide 52 text

x y px py

Slide 53

Slide 53 text

θ1 θ2 J1 J2

Slide 54

Slide 54 text

⌦2/⌦1 θ1 θ2 J1 J2

Slide 55

Slide 55 text

x = X k ak e i!kt !k = nk ⌦1 + mk ⌦2 + lk ⌦3 ⌦i = Fi(J1, J2, J3)

Slide 56

Slide 56 text

NAFF FFT orbit Convolve with Hanning filter Find and subtract strongest component [repeat] Laskar (1990) Valluri & Merritt (1998) (Numerical Approximation of Fundamental Frequencies)

Slide 57

Slide 57 text

1 2 ⌦1 ⌦2 Frequency Diffusion Chaotic orbit Regular orbit

Slide 58

Slide 58 text

Regular Chaotic Frequency Diffusion Price-Whelan et al. (2015)

Slide 59

Slide 59 text

Regular Chaotic

Slide 60

Slide 60 text

Frequency diffusion rate measures the magnitude of chaos for a given orbit

Slide 61

Slide 61 text

How chaotic are triaxial potentials?

Slide 62

Slide 62 text

Choose a potential: - Triaxial NFW - (c/a) = 0.6 - (b/a) = 0.8

Slide 63

Slide 63 text

~30,000 orbits E = E0 vx = vz = y = 0 x z

Slide 64

Slide 64 text

x z Price-Whelan et al. (2015) short axis tubes Intermediate axis long axis tubes box

Slide 65

Slide 65 text

How does chaos effect ensembles of orbits?

Slide 66

Slide 66 text

Triaxial / 3 dof = 6D phase space = 3D torus Regular orbit: Triaxial / 3 dof = 6D phase space = 5D energy surface Chaotic orbit:

Slide 67

Slide 67 text

Chaotically mixed ➞ uniform on energy surface ⇢E0 (x) / Z d3v (H E0) / p E0 ( x ) Price-Whelan et al. (2015) (projected into configuration space)

Slide 68

Slide 68 text

Globular cluster-like “debris” Ensembles E ⇡ 0.5% E0 Start at pericenter, evolve for 25 periods

Slide 69

Slide 69 text

“Distance” to fully-mixed state DKL( t ) = Z d x ⇢ ( x, t ) ln ⇢ ( x, t ) ⇢E0 ⇡ N X i ln ⇢ ( xi, tj) ⇢E0 Price-Whelan et al. (2015)

Slide 70

Slide 70 text

Price-Whelan et al. (2015) DKL Time Regular Chaotic }

Slide 71

Slide 71 text

Price-Whelan et al. (2015)

Slide 72

Slide 72 text

x z Price-Whelan et al. (2015)

Slide 73

Slide 73 text

What does chaos do to the observability of streams?

Slide 74

Slide 74 text

x z

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

Price-Whelan et al. (2015) Regular Chaotic

Slide 77

Slide 77 text

Chaos is generic to triaxial potentials Frequency diffusion seems to be predictive of observables, e.g., stream morphology More realistic potentials will be time- dependent, lumpy, multi-component, all of which may enhance chaos The mere existence of thin streams around the Milky Way places constraints on the potential