Slide 1

Slide 1 text

Checking out checking in: Observations on Foursquare usage patterns International Workshop on Finding Patterns of Human Behaviours in Network Data and Mobility Data - NEMO 9 Sept 2011 Martin Chorley, Gualtiero Colombo, Matthew Williams, Stuart Allen, Roger Whitaker Cardiff University

Slide 2

Slide 2 text

Motivation • Areas of study: • Presence of routine (regularity) in mobility and encounters • Relationship between personality traits and mobility behaviour • Heterogeneity in individuals’ behaviours

Slide 3

Slide 3 text

Motivation • Appropriate datasets hard to find! • In addition to the mobility trace, we want: • social graph • profiles of individuals • properties of the places individuals visit • ...and comprehensive coverage of a geographic region!

Slide 4

Slide 4 text

About Foursquare • “Location-based online social network” • Users ‘check-in’ to their current venue • Venues are user-contributed • Points, “mayorships”, and discounts to incentivise participation

Slide 5

Slide 5 text

World Foursquare usage Text http://blog.foursquare.com/2011/01/24/2010infographic/

Slide 6

Slide 6 text

About Foursquare visit history social graph user database venue database + category hierarchy

Slide 7

Slide 7 text

Data collection Cardiff city area: 140 km2 city population: 341,000

Slide 8

Slide 8 text

city area: 116 km2 Data collection Cambridge city population: 130,000

Slide 9

Slide 9 text

Collected data Foursquare dataset Foursquare dataset Foursquare dataset Foursquare dataset City population Collection area # users (>= 1 visit) # venues (>= 1 visit) # checkins Cardiff 341,000 7.0 x 9.0 km 1,701 1,234 13,299 Cambridge 130,000 5.0 x 3.5 km 1,196 852 6,464 Collection period: Mon 21st March – Fri 13th May 53 continuous days

Slide 10

Slide 10 text

Checkins heatmap Cardiff Cambridge 2km 2km fewest most

Slide 11

Slide 11 text

Overview of analysis topics • User activity and venue popularity • Checkins in time • User similarity

Slide 12

Slide 12 text

User activity and venue popularity

Slide 13

Slide 13 text

User activity 1 10 100 Number of Checkins 1 10 100 1000 Number of Users Cardiff Cambridge • Users with exactly one checkin: • Cambridge: 31% • Cardiff: 52% • Top 1% of users responsible for 15% of all checkins

Slide 14

Slide 14 text

Venue popularity 1 10 100 Number of Checkins 1 10 100 Number of Venues Cardiff Cambridge

Slide 15

Slide 15 text

Checkins in time

Slide 16

Slide 16 text

Checkins over time Cambridge Cardiff W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T missing data

Slide 17

Slide 17 text

Checkins per day Checkins per day Checkins per day Weekday Weekend Cardiff 246.2 255.5 Cambridge 123.5 126.0

Slide 18

Slide 18 text

Weekday checkins: Cardiff vs Cambridge !" #!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!! -;<<4=4:">"?91@4/:1A4:" B; G/4.D"HID0;;/:" J J;"-.D4=;/6" L7 !" #!" $!!" $#!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!!" $!'!!" $$'!!" $%'!!" $&'!!" $('!!" $#'! -;<<4=4:">"?91@4/:1A4:" B;;0" C G/4.D"HID0;;/:" J1=7D<1K4"LM;D:" N J;"-.D4=;/6" L7;M:" P/ !" #!" $!!" $#!" %!!" %#!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!!" $!'!!" $$'!!" $%'!!" $&'!!" $('!!" $#'!!" $)'!!" $*'!!" $+'!!" $,'!!" %!'!!" %$' -;<<4=4:">"?91@4/:1A4:" B;;0" C/D:">"E9D4/D.19F49D" G/4.D"HID0;;/:" J1=7D<1K4"LM;D:" N;F4:"O"3;/5"O"HD74/:" J;"-.D4=;/6" L7;M:" P/.@4<"LM;D:" % of all checkins in a day % of all checkins in a day Cardiff Cambridge

Slide 19

Slide 19 text

Weekend checkins: Cardiff vs Cambridge !" #!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!! -;<<4=4:">"?91@4/:1A4:" B; G/4.D"HID0;;/:" J J;"-.D4=;/6" L7 !" #!" $!!" $#!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!!" $!'!!" $$'!!" $%'!!" $&'!!" $('!!" $#'! -;<<4=4:">"?91@4/:1A4:" B;;0" C G/4.D"HID0;;/:" J1=7D<1K4"LM;D:" N J;"-.D4=;/6" L7;M:" P/ !" #!" $!!" $#!" %!!" %#!" !!'!!" !$'!!" !%'!!" !&'!!" !('!!" !#'!!" !)'!!" !*'!!" !+'!!" !,'!!" $!'!!" $$'!!" $%'!!" $&'!!" $('!!" $#'!!" $)'!!" $*'!!" $+'!!" $,'!!" %!'!!" %$' -;<<4=4:">"?91@4/:1A4:" B;;0" C/D:">"E9D4/D.19F49D" G/4.D"HID0;;/:" J1=7D<1K4"LM;D:" N;F4:"O"3;/5"O"HD74/:" J;"-.D4=;/6" L7;M:" P/.@4<"LM;D:" Cardiff Cambridge % of all checkins in a day % of all checkins in a day

Slide 20

Slide 20 text

User similarity

Slide 21

Slide 21 text

User similarity • We treat the fraction of checkins in venues of a particular category as the user’s interest in that category • Interest profile: vector of user’s interest levels for each category Coll&Uni Food Arts&Ent Outdoors Nightlife Home &Work Shops Travel User A 0.51 0.13 0.00 0.00 0.34 0.00 0.02 0.00 User B 0.57 0.05 0.10 0.00 0.20 0.00 0.03 0.05 User C 0.00 0.19 0.43 0.00 0.05 0.32 0.00 0.01 ... • Use proportional similarity metric to compute similarity between two of users’ interest profiles

Slide 22

Slide 22 text

User similarity Average proportional similarity: Friends: 0.19 All pairs: 0.05

Slide 23

Slide 23 text

The bad news... • Relies on self reporting • Users very W.E.I.R.D • Users have differing usage styles

Slide 24

Slide 24 text

Summary • Foursquare offers a rich source of data – location visits, social graph, venues, users • Stronger presence of routine on weekdays, but weekend checkins less structured • Friends are more similar in the types of places they visit

Slide 25

Slide 25 text

Ongoing and future research • Individual checkin patterns: regularity, predictability, heterogeneity • User co-location patterns • Relationship between personality traits and visiting behaviour

Slide 26

Slide 26 text

Thanks for listening! Questions? Matt Williams www.mattjw.net @voxmjw www.gplus.to/mattjw Supported by... { M.J.Chorley, G.Colombo, M.J.Williams, Stuart.M.Allen, R.M.Whitaker } @cs.cardiff.ac.uk www.recognition-project.eu