Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
ϨϜχεέʔτ͔Β ପԁؔ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
Slide 2
Slide 2 text
Ξʔϕϧͱପԁੵ wikipediaΑΓ Ξʔϕϧֶ͕ʹ֮Ίͯ200
Slide 3
Slide 3 text
ΨεͱϨϜχεέʔτੵ
Slide 4
Slide 4 text
ࢉज़زԿฏۉ aͱbͷࢉज़ฏۉ a + b 2 aͱbͷزԿฏۉ √ ab
Slide 5
Slide 5 text
ࢉज़زԿฏۉ a0 = 1, b0 = 1 √ 2 = 0.7071 · · · ͔ΒॳΊͯ࣍ʑ ܁Γฦ͢ɻ a1 = a0 + b0 2 = 0.853553 · · · b1 = √ a0 b0 = 0.840896 · · ·
Slide 6
Slide 6 text
ࢉज़زԿฏۉ a2 = a1 + b1 2 = 0.847224 · · · b2 = √ a1 b1 = 0.847201 · · · a3 = a2 + b2 2 = 0.847213 · · · b3 = √ a2 b2 = 0.847213 · · ·
Slide 7
Slide 7 text
ϨϜχεέʔτ r2 = cos 2θ O P
Slide 8
Slide 8 text
ϨϜχεέʔτੵ P Q R PQ2 + QR2 = PR2 √ (dr)2 + (rdθ)2 = ds
Slide 9
Slide 9 text
ϨϜχεέʔτੵ r2 = cos 2θ 2rdr = −2 sin 2θdθ 4r2(dr)2 = 4 sin2 2θ(dθ)2 = 4(1 − cos2 2θ)(dθ)2 = 4(1 − r4)(dθ)2
Slide 10
Slide 10 text
ϨϜχεέʔτੵ r4 1 − r4 (dr)2 = r2(dθ)2 ∫ √ (rdθ)2 + (dr)2 = ∫ √ 1 1 − r4 dr
Slide 11
Slide 11 text
ϨϜχεέʔτੵ s(t) = ∫ P O 1 √ 1 − r4 dr O P
Slide 12
Slide 12 text
ପԁੵͷඪ४ܗ r2 = 1 − sin2 θ rdr = −2 cos θ sin θdθ dr = −2 cos θ sin θdθ √ 1 − sin2 θ
Slide 13
Slide 13 text
ପԁੵͷඪ४ܗ dr √ 1 − r4 = −2 cos θ sin θdθ √ 1 − (1 − sin2 θ)2 √ 1 − sin2 θ = −2 sin θdθ √ 1 − (1 − sin2 θ)2 = −2 sin θdθ √ 2 sin2 θ − sin4 θ = −2dθ √ 2 − sin2 θ
Slide 14
Slide 14 text
∫ 1 0 dr √ 1 − r4 = 1 2 ∫ π/2 0 dθ √ 1 − (1/ √ 2)2 sin2 θ) K(k) = ∫ π/2 0 dθ √ 1 − k2 sin2 θ
Slide 15
Slide 15 text
ϥϯσϯมͱࢉज़زԿฏۉ kn = bn an , kn+1 = bn+1 an+1 ʹରͯ͠ 1 an K(kn ) = 1 an+1 K(kn+1 )
Slide 16
Slide 16 text
ϧδϟϯυϧͷؔࣜ E(k) = ∫ π/2 0 √ 1 − k2 sin2 θdθ k′2 + k2 = 1 E(k)K(k′) + E(k′)K(k) − K(k)K(k′) = π 2
Slide 17
Slide 17 text
ϧδϟϯυϧͷؔࣜ ಛʹk = 1 √ 2 ͷ࣌ 2E( 1 √ 2 )K( 1 √ 2 ) − K( 1 √ 2 )2 = π 2
Slide 18
Slide 18 text
·ͱΊ ▶ ϨϜχεέʔτੵପԁੵK( 1 √ 2 ) ▶ ࢉज़زԿฏۉͱପԁੵͷؔ ʢϥϯσϯมʣ ▶ ପԁੵͱԁपͷؔ ʢϧδϟϯυϧͷؔࣜʣ
Slide 19
Slide 19 text
ڏ๏ ପԁੵͷؔࣜ ∫ it 0 1 √ 1 − r4 dr = ∫ t 0 1 √ 1 − (ir′)4 d(ir′) = i ∫ t 0 1 √ 1 − r′4 dr′
Slide 20
Slide 20 text
ڏ๏ ପԁੵ s(t) = ∫ t 0 1 √ 1 − r4 dr ڏ๏ͱ͍͏ؔࣜΛຬͨ͢ s(it) = is(t)
Slide 21
Slide 21 text
ڏ๏ ପԁੵ K(k) = ∫ π/2 0 dθ √ 1 − k2 sin2 θ k ͝ͱʹ৭ʑଘࡏ͢ΔɻͦͷதͰϨϜχε έʔτੵK( 1 √ 2 )ಛผͳରশੑΛ࣋ͭɻ
Slide 22
Slide 22 text
Ξʔϕϧͱؔͷੵ
Slide 23
Slide 23 text
ϨϜχεέʔτੵ s(t) = ∫ t 0 1 √ 1 − r4 dr ʹ͍ͭͯϑΝχϟʔϊΦΠϥʔͷݚڀ
Slide 24
Slide 24 text
ΦΠϥʔͷՃ๏ఆཧ x = y − √ 1 − z4 + z √ 1 − y4 1 + y2z2 ͷͱ͖ ∫ x 0 1 √ 1 − r4 dr = ∫ y 0 1 √ 1 − r4 dr + ∫ z 0 1 √ 1 − r4 dr
Slide 25
Slide 25 text
ΞʔϕϧͷҰൠԽ ·ͣପԁੵ ∫ dx √ x3 + ax2 + bx + c Λߟ͑Δɻ
Slide 26
Slide 26 text
ΞʔϕϧͷҰൠԽ r = √ −x dr = − dx 2 √ −x ∫ dr √ 1 − r4 = − 1 2 ∫ dx √ (1 − x2)(−x)
Slide 27
Slide 27 text
ͦͷલʹ ԁͷހ ∫ dx √ 1 − x2 x = sin t ͱஔੵ
Slide 28
Slide 28 text
ࡾ֯ؔͷՃ๏ఆཧ C : x2 + y2 = 1 L(t) : y = t1 x + t2 P1 (t) P2 (t) O
Slide 29
Slide 29 text
Ξʔϕϧ C ͱL(t)ͷަP1 (t), P2 (t) ∫ dx y = ∫ dx √ 1 − x2 u(t) = ∫ P1(t) O dx y + ∫ P2(t) O dx y
Slide 30
Slide 30 text
t2 Λಈ͔͢ P1 (t) P2 (t) O ∂u(t) ∂t2 = 0
Slide 31
Slide 31 text
t1 Λಈ͔͢ P1 (t) P2 (t) O ∂u(t) ∂t1 = −2(arctan t1 )′
Slide 32
Slide 32 text
͜ͷ͜ͱ͔Βɺ u(t) = −2 arctan t1 = arcsin( −2t1 1 + t2 1 )
Slide 33
Slide 33 text
Ұํɺx1 , x2 ͕x2 + (t1 x + t2 )2 = 1ͷղͳͷͰ x1 x2 = t2 2 − 1 t2 1 + 1 , x1 + x2 = −2t1 t2 t2 1 + 1 Ͱ͋Δ͜ͱ͔Βɺ x1 y2 + x2 y1 = x1 (t1 x2 + t2 ) + x2 (t1 x1 + t2 ) = 2t1 x1 x2 + (x1 + x2 )t2 = −2t1 1 + t2 1
Slide 34
Slide 34 text
ͭ·Γɺ u(P1 (t)) + u(P2 (t)) = u(t) ∫ (x1,y1) (0,1) dx y + ∫ (x2,y2) (0,1) dx y = ∫ x1y2+x2y1 (0,1) dx y ͱͳΔɻ
Slide 35
Slide 35 text
ٯؔ u(s) = ∫ s 0 dx y ͷٯؔ u = ∫ s(u) 0 dx y ࠓͷ߹͜Ε͕ࡾ֯ؔ
Slide 36
Slide 36 text
Ճ๏ఆཧ u(t)ͷٯؔΛt = sin(u)ͱ͔͘ͱɺ sin(u(P1 ) + u(P2 )) = x1 y2 + x2 y1 = cos u(P1 ) sin u(P2 ) + sin u(P2 ) cos u(P1 )
Slide 37
Slide 37 text
·ͱΊ 1. u = ∫ s 0 dx √ 1 − x2 ͷٯ͕ؔsin u 2. x2 + y2 = 1ͷΞʔϕϧ ∫ P1(t) O dx y + ∫ P2(t) O dx y 3. ࡾ֯ؔͷՃ๏ఆཧ
Slide 38
Slide 38 text
ପԁੵ y2 = x3 + ax2 + bx + c ∫ P O dx √ x3 + ax2 + bx + c = ∫ P O dx y
Slide 39
Slide 39 text
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) P1 (t) P2 (t) P3 (t)
Slide 40
Slide 40 text
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) C ͷΞʔϕϧ u(t) = ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y
Slide 41
Slide 41 text
ΞʔϕϧͷՃ๏ఆཧ C ͱL(t)ͷަP1 (t), P2 (t), P3 (t) Ξʔϕϧͷఆཧ u(t) = ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y = 0
Slide 42
Slide 42 text
ପԁؔͷՃ๏ఆཧ ପԁੵͷٯؔ u = ∫ s(u) O dx y ΛΈͨ͢s(u)͕ପԁؔ
Slide 43
Slide 43 text
ପԁؔͷՃ๏ఆཧ P3 ͷ࠲ඪy = t1 x + t2 ͱ y2 = x3 + ax2 + bx + c ͔Βతʹٻ·Δ P1 P2 P3
Slide 44
Slide 44 text
ପԁؔͷՃ๏ఆཧ ∫ P1 O dx y + ∫ P2 O dx y + ∫ P3 O dx y = 0 u1 + u2 + u3 = 0 s(u1 + u2 ) = s(−u3 ) = P1 ͱP2 ͷతͳࣜ
Slide 45
Slide 45 text
·ͱΊ 1. u = ∫ s 0 dx √ x3 + ax2 + bx + c ͷٯ͕ؔ ପԁؔ 2. y2 = x3 + ax2 + bx + c ͷΞʔϕϧ ∫ P1(t) O dx y + ∫ P2(t) O dx y + ∫ P3(t) O dx y = 0 3. ପԁؔͷՃ๏ఆཧ
Slide 46
Slide 46 text
Ξʔϕϧੵ P1 (t), . . . , Pn (t)ΛC ͱDt ͷަͱ͢Δ u(t) = n ∑ i=0 ∫ Pi(t) P0 r(x, y)dx ͜͜Ͱr(x, y)dx dx y ͷΑ͏ͳ༗ཧࣜ
Slide 47
Slide 47 text
Ξʔϕϧͷఆཧ u(t) = n ∑ i=0 ∫ Pi(t) P0 r(x, y)dx u(t) = R(t) + ∑ logi Si (t) ͜͜ͰɺR(t), S(t)t ͷ༗ཧؔ
Slide 48
Slide 48 text
Ξʔϕϧͷఆཧ ω = pdx fy ∂u(t) ∂t1 = −x2p(x, t1 x + t2 ) f (x, t1 x + t2 ) ͷఆ߲ ∂u(t) ∂t2 = −xp(x, t1 x + t2 ) f (x, t1 x + t2 ) ͷఆ߲
Slide 49
Slide 49 text
Ξʔϕϧͷఆཧ p ͷ͕࣍খ͚͞Εu(t)ఆ ∫ P1 P0 ω + ∫ P2 P0 ω + · · · ∫ Pn P0 ω = 0
Slide 50
Slide 50 text
Ξʔϕϧͷఆཧͱपظ
Slide 51
Slide 51 text
Ξʔϕϧͷఆཧͷٯ Ξʔϕϧͷఆཧ P1 , P2 , P3 ͕Ұઢ্ͷͱ͖ u(P1 ) + u(P2 ) + u(P3 ) = 0 Ξʔϕϧͷఆཧͷٯ C ্ͷP1 , P2 , P3 ʹର͠ u(P1 ) + u(P2 ) + u(P3 ) = 0ͳΒP1 , P2 , P3 Ұ ઢ্ɻ
Slide 52
Slide 52 text
Ξʔϕϧͷఆཧͷٯ C ͕n࣍ۂઢf (x, y) = 0ͷͱ͖ P1 , . . . , Pg ͱQ1 , . . . , Qg ͔Β ∑ i u(Pi ) + ∑ i u(Qi ) + ∑ i u(Ri ) = 0 ΛΈͨ͢R1 , . . . , Rg ͕ܾ·Δɻ
Slide 53
Slide 53 text
पظ ੵͷ࣮Ұͭʹܾ·Βͣɺੵܦ࿏ʹ ґଘ͢Δɻ P Q O
Slide 54
Slide 54 text
पظ ίʔγʔͷੵఆཧ ಛҟΛճΒͳ͚ΕੵͷมΘΒͳ͍ पظ ಛҟͷपΓΛҰपճͬͨੵͨͪ ∫ γ ω
Slide 55
Slide 55 text
ϗϞϩδʔɺίϗϞϩδʔ ຊ࣭తʹҟͳΔܦ࿏͕ͲΕ͙Β͍͋Δ͔ʁ γ ∈ H1 (C, Z) पظ֨ࢠ Λ(C) = {( ∫ γ ωi ) | γ ∈ H1 (C, Z)} ⊂ C
Slide 56
Slide 56 text
ΞʔϕϧϠίϏͷఆཧ C ͕ࡾ࣍ࣜͷ࣌ C → C/Λ(C) ಉҰࢹΛ༩͑Δɻ
Slide 57
Slide 57 text
ϗοδཧ ඃੵؔω ͱੵܦ࿏γ ͷؔ ∫ γ ω ͕ۂઢf (x, y) = 0ʹґଘͨ͠ྔΛ༩͑Δɻ
Slide 58
Slide 58 text
ϞδϡϥΠ ▶ ପԁؔͰҟͳΔͷ͕ͲΕ͙Β͍͋ Δ͔ʁ ▶ पظ͕ͲΕ͙Β͍͋Δ͔ʁ ͜ΕΒΛूΊͯҰͭͷزԿֶతରͱͯ͠ ѻͬͨͷ͕ϞδϡϥΠۭؒ
Slide 59
Slide 59 text
ࢀߟจݙ ▶ פޫɺશପԁੵͱΨεɾϧδϟ ϯυϧ๏ʹΑΔπ ͷܭࢉ ▶ Phillip Griffiths, The legacy of Abel in algebraic geometry ▶ Phillip Griffiths, Variations on a Theorem of Abel