Slide 12
Slide 12 text
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-1, 1e3))
(X, Y) = get_data(...)
kernel = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.)
m = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=3)
m.fit(X, Y)
y_pred, sigma = m.predict(x, return_std=True)
(Pronounced “sy-kit learn”. sci stands for science!)
Sci-kit learn code