Slide 1

Slide 1 text

understanding the basics #DS101

Slide 2

Slide 2 text

HELLO My name is ASWAN

Slide 3

Slide 3 text

aswansyahputra ● Data Analyst @ Jabar Digital Service ● Sensory Scientist @ Sensolution.ID ● Instructor @ R Academy Telkom University ● Initiator of Komunitas R Indonesia

Slide 4

Slide 4 text

Unit di bawah Dinas Komunikasi dan Informatika Provinsi Jawa Barat yang dicita-citakan dapat mempersempit kesenjangan digital, membantu efisiensi dan akurasi pengambilan kebijakan berbasis data dan teknologi, serta merevolusi pemakaian teknologi dalam kehidupan masyarakat serta pemerintahan di Jawa Barat. Jabar Digital Service

Slide 5

Slide 5 text

R Indonesia www.r-indonesia.id Telegram: @GNURIndonesia (t.me/GNURIndonesia) Web: www.r-indonesia.id GitHub: www.github.com/indo-r

Slide 6

Slide 6 text

data ? what is

Slide 7

Slide 7 text

“Facts that can be analyzed or used in an effort to gain knowledge or make decisions; information.” “a collection of facts, observations, or other information related to a particular question or problem.” “a collection of facts from which conclusions may be drawn.” – The American Heritage® Dictionary of the English Language, 5th Edition – GNU version of the Collaborative International Dictionary of English – WordNet 3.0 Copyright 2006 by Princeton University

Slide 8

Slide 8 text

crucial ? why is it

Slide 9

Slide 9 text

science ? what is data

Slide 10

Slide 10 text

Data science is the art of turning raw data into understanding

Slide 11

Slide 11 text

why the hype?

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

activities ? what are the

Slide 14

Slide 14 text

Prepare

Slide 15

Slide 15 text

Prepare Understand

Slide 16

Slide 16 text

Prepare Understand Communicate

Slide 17

Slide 17 text

workflow ? how is the

Slide 18

Slide 18 text

Import Tidy Transform Visualise Model Communicate

Slide 19

Slide 19 text

Remote Files Local Files Database API Clipboard Data import

Slide 20

Slide 20 text

Data wrangling Tidy Transform

Slide 21

Slide 21 text

Data visualisation I. Exploration

Slide 22

Slide 22 text

Data visualisation II. Presentation

Slide 23

Slide 23 text

Data modeling Predict Explain “All models are wrong, but some are useful” – George Box

Slide 24

Slide 24 text

Mean of x 9 exact Sample variance of x 11 exact Mean of y 7.50 to 2 decimal places Sample variance of y 4.125 ±0.003 Correlation between x and y 0.816 to 3 decimal places Linear regression line y = 3.00 + 0.500x to 2 and 3 decimal places, respectively R2 0.67 to 3 decimal places Anscombe’s Quartet

Slide 25

Slide 25 text

Viz + Stats

Slide 26

Slide 26 text

Graphics Dashboards Reports Slides API Data communication

Slide 27

Slide 27 text

key skills ? what are the

Slide 28

Slide 28 text

Import Tidy Transform Visualise Model Communicate

Slide 29

Slide 29 text

Import Tidy Transform Visualise Model Communicate Understand

Slide 30

Slide 30 text

Program Import Tidy Transform Visualise Model Communicate Understand

Slide 31

Slide 31 text

Statistic

Slide 32

Slide 32 text

Statistic Program

Slide 33

Slide 33 text

Think Do Describe (preciely) Cognitive Computational

Slide 34

Slide 34 text

Easy to use for the standard things, but very frustrating if you want to do something that is not already preprogrammed. Program like SPSS are busses...

Slide 35

Slide 35 text

R can take you anywhere you want to go if you take time to learn how to use the equipment, but that is going to take longer than learning where the bus stops are in SPSS. R is a 4-wheel drive SUV (though environmentally friendly) with a bike on the back, a kayak on top, good walking and running shoes in the passenger seat, and mountain climbing and spelunking gear in the back.

Slide 36

Slide 36 text

It’s just a text!

Slide 37

Slide 37 text

It’s just a text! Ctrl + C Ctrl + V

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

in jds ? how is it

Slide 40

Slide 40 text

Program Import Tidy Transform Visualise Model Communicate Understand

Slide 41

Slide 41 text

Program Import Tidy Transform Visualise Model Communicate Understand

Slide 42

Slide 42 text

Demo