Slide 22
Slide 22 text
2. CD-DNN-HMM Configuration
‣ Input :15 frames (7-1-7) of MFCCs
normalized to zero mean and unit variance
‣ # hidden layers : 1 – 8
‣ # hidden units : 512, 1024, 2048
‣ Activation func : ReLU
‣ Initialization : Supervised layer-wise pre-training
‣ Minibatch size : 200
‣ Learning rate : 0.0001 (with Newbob decay scheduler)
‣ Weight decay : 0.001
‣ Momentum : 0.99
‣ Max-norm : 1
‣ Dropout rate : input = 0.5; hidden = 0.02
‣ Min # epoches : 24 (fine-tuning)
05/04/2016 University of Missouri-Columbia
22