Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 3

Slide 3 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 4

Slide 4 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 5

Slide 5 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 6

Slide 6 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 7

Slide 7 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 8

Slide 8 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 9

Slide 9 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 10

Slide 10 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 11

Slide 11 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio Benefits Low High

Slide 12

Slide 12 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 13

Slide 13 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 14

Slide 14 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 15

Slide 15 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio Data Science: What’s Happening Now!

Slide 16

Slide 16 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 17

Slide 17 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 18

Slide 18 text

Data Source 1 Data Source 2 Organized Data Decision Tree Naïve Bayes Random Forest Logistic Regression Algorithms used to predict Recommend the model with highest accuracy 2006 2007 2008 . . . 2015 2016 2017 2018 Historical Data Model Building Model Testing Prediction Existing Customers Who is likely to buy? Model Results Case Study 1 – Who is likely to Buy? Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 19

Slide 19 text

Decision Tree Logistic Regression Random Forest Naïve Bayes 62.8% 37.2% 46.2% 53.8% 62.1% 37.9% 61.5% 38.5% Results Algorithms Four different algorithms for prediction – Lower accuracy in each model Expected accuracy level is around 75-80% Explore other methods to improve accuracy of predicted values ▪ Data until 2015 is used for model building and predicted for 2016 ▪ The results from model were validated using actual data of 2016 Model Building Issue of Low Prediction Accuracy Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 20

Slide 20 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio

Slide 21

Slide 21 text

Intro Data Science Lifecycle Why DS Role of DS Applications Learning Portfolio