Slide 1

Slide 1 text

Programming   Complexity Modeling  Complex  Systems  with  Go  and  React Chang  Sau Sheong sausheong@gmail.com

Slide 2

Slide 2 text

Complexity The  behavior  that  emerges  from  a  group  of  interacting   parts,  that  is  not  directly  the  result  of  interactions   between  individual  parts

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

Modeling  cultural  interactions

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

The  Dissemination  of  Culture American  political  scientist,  complexity  theory  researcher,   National  Medal  of  Science  laureate Robert  Axelrod

Slide 9

Slide 9 text

Cultures  who  are  similar  to  each  other  are   likely  to  interact

Slide 10

Slide 10 text

When  cultures  interact,  they  become  more   alike  each  other

Slide 11

Slide 11 text

Agent-­‐based  model  where  each  agent   represents  a  culture  

Slide 12

Slide 12 text

Culture  =  Set  of  Features language,  religion,  style  of  dress  etc

Slide 13

Slide 13 text

Trait  =  possible  values  of  a  feature

Slide 14

Slide 14 text

36  x  36  grid each  cell  has  a  culture culture

Slide 15

Slide 15 text

5 4 3 2 1 0 Each  culture  has  6  features

Slide 16

Slide 16 text

Each  feature  has  16  possible  traits 0 1 2 3 4 5 6 7 8 9 A B C D E F

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

8  neighbours

Slide 20

Slide 20 text

Algorithm •At  every  tick,  randomly  pick  n  cells •Compare  features  of  the  culture  with  each  of  its   neighbours •If  the  trait  difference  for  the  same  feature  between  2   cultures  are  <  t,  randomly  select  either  culture  and   copy  the  trait  of  the  feature  to  the  other  culture

Slide 21

Slide 21 text

A B A  and  B  are  2   neighbouring cultures

Slide 22

Slide 22 text

difference  is  5  – 2  =  3 culture  B culture  A A 0 5 5 F 6 F A D 2 D 0

Slide 23

Slide 23 text

A 0 5 5 F 6 F A D 2 D 0 culture  B culture  A Difference  between  2  cultures  =  34 5 A 8 3 2 6 + + + + + = 34

Slide 24

Slide 24 text

F F F F F F 0 0 0 0 0 0 culture  B culture  A 100%  different  =  96 F F F F F F + + + + + = 96

Slide 25

Slide 25 text

A 0 5 5 F 6 culture  B culture  A Difference  between  2  cultures  that  are  100%  similar  =  0 0 0 0 0 0 0 + + + + + = 0 A 0 5 5 F 6

Slide 26

Slide 26 text

The  more  similar  2  cultures  are,  the  more  likely   there  will  be  cultural  exchange Probability  of  cultural  exchange  =  1  -­‐ difference   between  2  cultures  ÷ 96

Slide 27

Slide 27 text

Probability  of  cultural  exchange: 1   −   34 96 = 1   − 0.354 = 64.6%  

Slide 28

Slide 28 text

culture  B culture  A Randomly  choose  to  copy  one  of  culture  A’s   features  to  culture  B  or  vice  versa A 0 5 5 F 6 F A 5 2 D 0 When  interaction  happens

Slide 29

Slide 29 text

What  do  we  want  to  measure? •Average feature  distance  tells  us  how  far  apart   (different)  the  cultures  are •Uniques tells  us  the  number  of  unique  cultures  at  any   given  point  in  time •Changes tells  us  how  vibrant  the  cultural  exchanges   are

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

Observations •Eventual  equilibrium  is  only  a  few  dominant  cultures •Dominant  cultures  can  be  quite  different  from  each   other •Smaller  areas  results  in  faster  equilibrium  and  smaller   number  of  dominant  cultures •A  culture  that  is  more  dominant  at  a  point  in  time   doesn’t  mean  it  will  be  dominant  in  the  end

Slide 33

Slide 33 text

Modeling  racial   segregation

Slide 34

Slide 34 text

Chicago

Slide 35

Slide 35 text

Washington  D.C. New  York  City Detroit Los  Angeles

Slide 36

Slide 36 text

London

Slide 37

Slide 37 text

Dynamic  Models  of  Segregation American  economist,  2005  Nobel  Prize  in  Economics Thomas  Schelling

Slide 38

Slide 38 text

36  x  36  grid each  cell  has  a  household

Slide 39

Slide 39 text

8  neighbours

Slide 40

Slide 40 text

Algorithm •At  every  tick,  check  every  cell •If  at  least  n  number  of  its  neighbours are  of  the  same   ‘race’,  do  nothing •Otherwise,  randomly  pick  an  empty  cell  and  move   there

Slide 41

Slide 41 text

Parameters •Acceptable number  of  neighbours (n) •Number of  ‘races’  in  the  grid  (r) •Percentage  of  vacant  cells  (v) •Policy  limitation – cannot  have  more  than  (l)  number   of  neighbours of  the  same  race

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

Observations • Segregation  happens  even  if  there  is  weak  preference  for  neighbours of  same  type • The  weaker  the  preference,  the  less  segregated  (smaller  clusters) • The  stronger  the  preference,  the  more  segregated  (larger  clusters) • At  a  threshold,  stronger  preference  results  in  an  unstable  but  non-­‐ segregated  state  (occupants  always  moving  to  another  cell) • Number  of  races  have  no  impact  of  segregation • Number  of  vacant  cells  have  no  impact  on  segregation • Policy  enforcement  has  limited  impact  on  segregation  (stronger   policies  result  in  unstable  state)

Slide 45

Slide 45 text

Modeling  bystander  effect

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

Game  Theory

Slide 50

Slide 50 text

The  study  of  mathematical  models  of  conflict  and   cooperation,  often  used  in  economics  and  political   science

Slide 51

Slide 51 text

Volunteer’s  Dilemma

Slide 52

Slide 52 text

V  =  value  gained  if  at  least  1  person  volunteers C  =  individual  cost  of  volunteering A =  overall  cost  if  no  one  volunteers

Slide 53

Slide 53 text

You volunteer You  don’t   volunteer I volunteer I  don’t  volunteer V  -­ C V  -­ C V  -­ C V V  -­ C V V  -­ A V  -­ A Payoff  matrix  for  a  2-­‐player  game

Slide 54

Slide 54 text

You  volunteer You don’t   volunteer I volunteer I  don’t  volunteer V  -­ C V  -­ C V  -­ C V V  -­ C V V  -­ A V  -­ A If  I  volunteer

Slide 55

Slide 55 text

You  volunteer You  don’t   volunteer I volunteer I  don’t  volunteer V  -­ C V  -­ C V  -­ C V V  -­ C V V  -­ A V  -­ A If  I  don’t volunteer

Slide 56

Slide 56 text

Mixed  strategy  Nash  equilibrium V  – C  =  pV +  (1  – p)(V  – A)   where  p  =  probability  of  volunteering  

Slide 57

Slide 57 text

For  an  N-­‐player  game Probability  of  volunteering  =  p  x  p  x  …  x  p =  pN-­‐1 N  – 1  times

Slide 58

Slide 58 text

For  an  N-­‐player  game Probability  of  not  volunteering  =  (1  – p)N-­‐1

Slide 59

Slide 59 text

V  =  value  if  at  least  1  volunteer C  =  individual   cost  of  volunteering A  =  overall  cost  if  no  volunteers N  =  number  of  people  involved p  =  probability  of  getting  at  least  1  volunteer 1-­‐ p  =  probability  of  getting  no  volunteers V  – C  =  (pN-­‐1)V  +  (1  – p) N-­‐1(V  – A)  

Slide 60

Slide 60 text

V  =  value  if  at  least  1  volunteer C  =  individual   cost  of  volunteering A  =  overall  cost  if  no  volunteers N  =  number  of  people  involved p  =  probability  of  getting  at  least  1  volunteer 1-­‐ p  =  probability  of  getting  no  volunteers p =1− C A " # $ % & ' 1 N−1

Slide 61

Slide 61 text

Monte  Carlo  simulation

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

Observations •Decrease  individual  cost  of  volunteering •Increase  the  overall  costs/impact  of  not  volunteering   (??) •Increase  difference  between  individual  cost  and   overall  costs •Reduce  number  of  ‘players’ •Increasing  number  of  players  have  negative  or  no   impact

Slide 65

Slide 65 text

@sausheong sausheong@gmail.com http://blog.saush.com http://github.com/sausheong