Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

SEBASTIÁN says hi!

Slide 4

Slide 4 text

SP ACY Open-source library for industrial-strength Natural Language Processing 100k+ U S E R S

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

Annotation tool for creating training data for machine learning models 3000+ U S E R S P R O D IG Y

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

Lightweight deep learning library for composing models with a functional type-checked API THINC new R E L E A S E

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

Python GROWTH

Slide 12

Slide 12 text

Why PYTHON? C extensions dynamic language general-purpose

Slide 13

Slide 13 text

better than specialized “AI language” easier for developers to branch out General PURPOSE

Slide 14

Slide 14 text

GENERALISTS SPECIALISTS

Slide 15

Slide 15 text

GENERALISTS SPECIALISTS COMPLEMENTARY

Slide 16

Slide 16 text

GENERALISTS SPECIALISTS COMPLEMENTARY Tree-shaped SKILLS T-SHAPED TREE-SHAPED

Slide 17

Slide 17 text

you ship your organizational structure GENERALISTS SPECIALISTS COMPLEMENTARY Tree-shaped SKILLS T-SHAPED TREE-SHAPED

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

Processing PIPELINE TEXT DOC

Slide 20

Slide 20 text

Processing PIPELINE PART-OF- SPEECH TAGGER NAMED ENTITY RECOGNIZER SYNTACTIC DEPENDENCY PARSER TEXT DOC

Slide 21

Slide 21 text

Processing PIPELINE PART-OF- SPEECH TAGGER NAMED ENTITY RECOGNIZER SYNTACTIC DEPENDENCY PARSER TEXT DOC PERSON

Slide 22

Slide 22 text

Transfer LEARNING

Slide 23

Slide 23 text

Transfer LEARNING TASK- SPECIFIC MODEL TEXT

Slide 24

Slide 24 text

Transfer LEARNING TASK- SPECIFIC MODEL TEXT GENERAL LANGUAGE MODEL

Slide 25

Slide 25 text

Transformer MODELS accurate and reusable subnetwork different workflows: working at the tensor level

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

Problem #1 Local AI startup’s code base “kind of hard to read” Matt (25, Senior Engineer): “array[:, ..., :4] – what does this even mean?” BREAKING

Slide 28

Slide 28 text

How many DIMENSIONS?

Slide 29

Slide 29 text

How many DIMENSIONS? 2

Slide 30

Slide 30 text

How many DIMENSIONS?

Slide 31

Slide 31 text

How many DIMENSIONS? 2

Slide 32

Slide 32 text

How many DIMENSIONS?

Slide 33

Slide 33 text

1 How many DIMENSIONS?

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

Y: Floats3d Incompatible return value type (got "Tuple[Floats3d, Callable[[Any], Any]]", expected "Tuple[Floats1d, Callable[..., Any]]")

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

Relu: Relu Layer outputs type (thinc.types.Floats2d) but the next layer expects (thinc.types.Ragged) as an input

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

Problem #2 HYPER- PARAMETERS WEIGHTS OTHER SETTINGS MODEL CODE MACHINE LEARNING LIBRARY

Slide 43

Slide 43 text

Problem #2 HYPER- PARAMETERS WEIGHTS OTHER SETTINGS MODEL CODE MACHINE LEARNING LIBRARY

Slide 44

Slide 44 text

THINC.AI →

Slide 45

Slide 45 text

1 THINC.AI →

Slide 46

Slide 46 text

1 2 THINC.AI →

Slide 47

Slide 47 text

1 2 THINC.AI →

Slide 48

Slide 48 text

1 2 3 THINC.AI →

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

Under THE HOOD 1

Slide 51

Slide 51 text

Under THE HOOD 1 2

Slide 52

Slide 52 text

Coming SOON

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

Problem #3 WE NEED A DATABASE OF COMPANY ACQUISITIONS WITH PRICES AND STOCK TICKERS. pytorch predict company acquisitions with prices and stock tickers No results. OKAY, I'M ON IT!

Slide 55

Slide 55 text

Microsoft acquires software development platform GitHub for $7.5 billion

Slide 56

Slide 56 text

Microsoft acquires software development platform GitHub for $7.5 billion

Slide 57

Slide 57 text

TEXT CLASSIFIER Microsoft acquires software development platform GitHub for $7.5 billion

Slide 58

Slide 58 text

TEXT CLASSIFIER ENTITY RECOGNIZER Microsoft acquires software development platform GitHub for $7.5 billion

Slide 59

Slide 59 text

TEXT CLASSIFIER ENTITY RECOGNIZER ENTITY LINKER Microsoft acquires software development platform GitHub for $7.5 billion

Slide 60

Slide 60 text

TEXT CLASSIFIER ENTITY RECOGNIZER ENTITY LINKER ATTRIBUTE LOOKUP Microsoft acquires software development platform GitHub for $7.5 billion

Slide 61

Slide 61 text

TEXT CLASSIFIER ENTITY RECOGNIZER ENTITY LINKER ATTRIBUTE LOOKUP CURRENCY NORMALIZER Microsoft acquires software development platform GitHub for $7.5 billion

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

Problem #4 in practice CODE DATA in theory DATA CODE

Slide 64

Slide 64 text

Pope Francis visits U.S. Which is CORRECT? P E R S O N Pope Francis visits U.S. P E R S O N

Slide 65

Slide 65 text

I love cats . I hate cats . Similar OR NOT?

Slide 66

Slide 66 text

PRODIGY.AI →

Slide 67

Slide 67 text

PRODIGY.AI →

Slide 68

Slide 68 text

PRODIGY.AI →

Slide 69

Slide 69 text

PRODIGY.AI →

Slide 70

Slide 70 text

PRODIGY.AI →

Slide 71

Slide 71 text

Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 72

Slide 72 text

S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 73

Slide 73 text

H I L L O F H O P E S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 74

Slide 74 text

P L A T E A U O F F R U S T R A T I O N H I L L O F H O P E S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 75

Slide 75 text

Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 76

Slide 76 text

S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 77

Slide 77 text

Q U I C K S A N D O F S U N K C O S T S S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project

Slide 78

Slide 78 text

Q U I C K S A N D O F S U N K C O S T S S W A M P O F UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) typical project when TO STOP?

Slide 79

Slide 79 text

I T E R A T I V E W E T L A N D S O F S L I G H T L Y L E S S UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) future project

Slide 80

Slide 80 text

I T E R A T I V E W E T L A N D S O F S L I G H T L Y L E S S UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) future project STOP STOP

Slide 81

Slide 81 text

M E A D O W S O F S U C C E S S GO! I T E R A T I V E W E T L A N D S O F S L I G H T L Y L E S S UN C E R TAIN T Y Effort (training data size, time, experimenting) Effectiveness (accuracy, quality) future project STOP STOP

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

Future OUTLOOK

Slide 84

Slide 84 text

Future OUTLOOK lots of developers generalists & specialists WHO?

Slide 85

Slide 85 text

Future OUTLOOK transfer learning component pipelines WHAT? lots of developers generalists & specialists WHO?

Slide 86

Slide 86 text

Future OUTLOOK transfer learning component pipelines WHAT? iterative in-house HOW? lots of developers generalists & specialists WHO?

Slide 87

Slide 87 text

No content