Slide 25
Slide 25 text
• Simple image classification
model
_ Defines CNN
Layer definition: Input to Output
_ Compile model
_ Train the model
_ Evaluate the result model
# Input definition
conv2d_kwargs = {
"kernel_size": (3, 3),
"activation": "relu",
"padding": "same",
}
inputs = keras_core.Input(shape=(32, 32, 3), name="input_layer")
# Layer structure definition
x = inputs
for filters in [32, 64, 128]:
x = keras_core.layers.Conv2D(filters=filters, **conv2d_kwargs)(x)
x = keras_core.layers.BatchNormalization()(x)
x = keras_core.layers.Conv2D(filters=filter, strides=(2, 2),
**conv2d_kwargs)(x)
x = keras_core.layers.BatchNormalization()(x)
x = keras_core.layers.Dropout(0.25)(x)
x = keras_core.layers.GlobalAveragePooling2D()(x)
x = keras_core.layers.Dense(128, activation="relu")(x)
x = keras_core.layers.Dropout(0.25)(x)
outputs = keras_core.layers.Dense(10, activation="softmax",
name="output_layer")(x)
Example: Causal Keras Code
25