Slide 1

Slide 1 text

Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto Arbitrio - Valerio Maggio
 arbitrio | [email protected] Florence April 6, 2017

Slide 2

Slide 2 text

Retail Data • Overview of data we have • granularity • refresh/update rate • Quantity and storage required (space) • services developed around these data

Slide 3

Slide 3 text

“Materialized Views” • Description of what they are (non-technical) • Some examples of Analytics we do on this data

Slide 4

Slide 4 text

The Problem! ~1 TByte Data We need OLAP Performance:
 75M rows -> 5hours

Slide 5

Slide 5 text

The Solution! Use a Column-oriented Database
 (i.e. Just swap Rows with Columns) Chuck Norris Test 
 Passed!

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

Query

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

Thank you get in touch @__pamaron__ @leriomaggio