Slide 1

Slide 1 text

5FOTPS'MPXKTͰ༡Ϳ ୈճ௕Ԭ*5։ൃऀษڧձ /%4 ּݪ޺ !LBTBDDIJGVM

Slide 2

Slide 2 text

ࣗݾ঺հ w ּݪ޺ !LBTBDDIJGVM w ৽ׁࢢࡏॅ w 3VCZ͕͓ؾʹೖΓ w +B445৽ׁ࣮ߦҕһ w +"846(৽ׁࢧ෦

Slide 3

Slide 3 text

+"846(/JJHBUB ౔ ։࠵ʂʹ͍͕ͨञͷਞʂ IUUQTKBXTVHOJJHBUBDPOOQBTTDPN

Slide 4

Slide 4 text

ࠓճͷ಺༰ IUUQTKTUFOTPSqPXPSH

Slide 5

Slide 5 text

5FOTPS'MPXKTͱ͸ʁ +BWB4DSJQUͰ σΟʔϓϥʔχϯά

Slide 6

Slide 6 text

5FOTPS'MPXKTͱ͸ʁ w 5FOTPS'MPXͷ+BWB4DSJQU൛ w 8FCϒϥ΢β΍/PEFKTͰಈ࡞Մೳ w 5FOTPS'MPX΍,FSBTͷֶशࡁϞσϧΛίϯόʔτՄೳ w 5FOTPS'MPXKT୯ମͰ΋ֶशՄೳ w 8FC(-͕༗ޮͳΒɺ(16΋࢖͑Δ

Slide 7

Slide 7 text

5FOTPS'MPXKTͰֶश // Define a model for linear regression. const model = tf.sequential(); model.add(tf.layers.dense({units: 1, inputShape: [1]})); // Prepare the model for training: Specify the loss and the optimizer. model.compile({loss: 'meanSquaredError', optimizer: 'sgd'}); // Generate some synthetic data for training. const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]); const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]); // Train the model using the data. model.fit(xs, ys).then(() => { // Use the model to do inference on a data point the model hasn't seen before: // Open the browser devtools to see the output model.predict(tf.tensor2d([5], [1, 1])).print(); }); Ҿ༻5SZ5FOTPS'MPXKT IUUQTDPEFQFOJPQFO FEJUBCMFUSVFFEJUPST

Slide 8

Slide 8 text

ࠓճ΍Δ͜ͱ ৽ׁͷ໊࢈඼ͷը૾෼ྨͰ༡Ϳ 1PTF/FUʹΑΔ࢟੎ਪఆͰ༡Ϳ

Slide 9

Slide 9 text

ࠓճ΍Δ͜ͱ ৽ׁͷ໊࢈඼ͷը૾෼ྨͰ༡Ϳ 1PTF/FUʹΑΔ࢟੎ਪఆͰ༡Ϳ

Slide 10

Slide 10 text

৽ׁͷ໊࢈඼ͷը૾෼ྨ w ೥݄ʹʮୈճ௕Ԭ*5։ൃऀษڧձ /%4 ʯͰ͓࿩ͨ͠͠಺༰Ͱ͢ɻ w ࢿྉIUUQTTQFBLFSEFDLDPNLBTBDDIJGVMOET w σϞιʔεIUUQTHJUIVCDPNLBTBDDIJGVMOETTBNQMFCMPCNBTUFS OET@WHH@TBNQMFJQZOC

Slide 11

Slide 11 text

ֶश͢Δը૾ w ৽ׁΛ୅ද͢Δ#ڃάϧϝ w ࡫ஂࢠ w ֟ͷछʢُా੡՛ʗӽޙ੡՛ʗ࿘Ֆ԰੡՛ͳͲʣ w ΠλϦΞϯʢΈ͔͖ͮͱϑϨϯυ͸෼͚͍ͯ·ͤΜʣ w όεηϯλʔͷΧϨʔʢ෱ਆ௮͚ଟΊͷԫ৭͍ΧϨʔͰ ͢ʣ

Slide 12

Slide 12 text

શମਤ ਖ਼ղϥϕϧ෇ ֶशը૾σʔλ ֶश ਪ࿦ ະ஌ͷ ը૾σʔλ 7(( Ϟσϧ ൑ఆ ,FSBT ֶशࡁ Ϟσϧ 5FOTPS'MPXKT ܗࣜͷ ֶशࡁϞσϧ ί ϯ ό ʔ λ ม׵

Slide 13

Slide 13 text

,FSBTϞσϧͷίϯόʔτ // install $ pip install tensorflowjs // convert $ tensorflowjs_converter --input_format keras model.h5 ./model // modelͷத਎ $ ls model/ group1-shard10of17 group1-shard13of17 group1-shard16of17 group1- shard2of17 group1-shard5of17 group1-shard8of17 group1-shard11of17 group1-shard14of17 group1-shard17of17 group1- shard3of17 group1-shard6of17 group1-shard9of17 group1-shard12of17 group1-shard15of17 group1-shard1of17 group1- shard4of17 group1-shard7of17 model.json IܗࣜͷϞσϧϑΝΠϧΛίϯόʔτ͠ɺUBSHFU@EJS ͜͜Ͱ͸NPEFM ʹอଘ

Slide 14

Slide 14 text

,FSBTϞσϧͷίϯόʔτ import keras import tensorflowjs as tfjs model = keras.models.load_model(”./model.h5”) tfjs.converters.save_keras_model(model, ’./model’) 1ZUIPOεΫϦϓτ্Ͱ΋ɺ,FSBTϞσϧϑΝΠϧอଘ࣌ʹม׵Մೳ

Slide 15

Slide 15 text

+4ͰͷϞσϧͷϩʔυ const model = await tf.loadModel(”./model/model.json”); NPEFMKTPOΛಡΈࠐΈ࣌ʹࢦఆ͢Ε͹ྑ͍

Slide 16

Slide 16 text

σϞ

Slide 17

Slide 17 text

ࠓճ΍Δ͜ͱ ৽ׁͷ໊࢈඼ͷը૾෼ྨͰ༡Ϳ 1PTF/FUʹΑΔ࢟੎ਪఆͰ༡Ϳ

Slide 18

Slide 18 text

1PTF/FUͱ͸ʁ w 5FOTPS'MPXKTΛ࢖ͬͯϒϥ΢β্ͰϦΞϧλΠϜ࢟੎ਪ ఆͰ͖ΔϞσϧ w 5FOTPS'MPXKTͷσϞͷͭʹ͋Δ w .PCJMF/FUϕʔεͳͷͰɺਪ࿦ಈ࡞͕֓Ͷ͍ܰ

Slide 19

Slide 19 text

1PTF/FUͰݕग़Ͱ͖Δ෦Ґ w ඓ w ࠨ؟ɺӈ؟ w ࠨࣖɺӈࣖ w ࠨݞɺӈݞ w ࠨͻ͡ɺӈͻ͡ w ࠨखटɺӈखट w ࠨ৲ɺӈ৲ w ࠨͻ͟ɺӈͻ͟ w ࠨ଍टɺӈ଍ट

Slide 20

Slide 20 text

σϞ إʹ໨Ӆͯ͠͠༡Ϳ ΞΩϥͰ༡Ϳ ϘʔϧͰ༡Ϳ

Slide 21

Slide 21 text

࠷ޙʹ w 5FOTPS'MPXKT͸ɺ8FCϒϥ΢β্ͳͲͰਪ࿦͢Δࡍͷબ ୒ࢶͷͭ w /PEFKTͰ΋ಈ͘ͷͰɺ3BTQCFSSZ1J΍PCOJ[Ͱ΋͍͚Δ ͸ͣ w ࢟੎ਪఆͰ༡Ϳͷ͸ָ͍͠