Slide 1

Slide 1 text

PROJECT SEMINAR THEME Volume Estimation of Real world objects Joel Vilanilam Zachariah Roll No. 30 | CSU 161 30 | MDL16CS059 Govt. Model Engineering College

Slide 2

Slide 2 text

BASE PAPER MUSEFood OTHER APPROACHES Kabaq WHY THIS THEME? ARomapp KEY HIGHLIGHTS

Slide 3

Slide 3 text

PART 0: PROLOGUE OUR PURSUIT TO REDUCE FOOD WASTAGE

Slide 4

Slide 4 text

PART 1: DEPTH ESTIMATION TECHNIQUES DERIVING 3D FROM 2D

Slide 5

Slide 5 text

BASE PAPER MUSEFood MULTI-SENSOR-BASED FOOD VOLUME ESTIMATION ON SMARTPHONES

Slide 6

Slide 6 text

PART 2: INTRODUCTION THE APPROACH OF THIS METHOD

Slide 7

Slide 7 text

FOOD SEGMENTATION FROM BACKGROUND (1) CNN + GrabCut (2) Point Matching RELATIVE FOOD SIZE TO ACTUAL FOOD SIZE (1) Place reference object (2) Depth image from special device

Slide 8

Slide 8 text

PART 3: RELATED WORK

Slide 9

Slide 9 text

FOOD ITEM SEGMENTATION Location of Food item in image ACTUAL SIZE SCALING Reference Object OR Train to detect FOOD MODELING Deriving Deep maps from deep Neural Networks OR Stereo Matching

Slide 10

Slide 10 text

PART 4: METHODS

Slide 11

Slide 11 text

OVERVIEW 1) Sensing 2) Data Processing 3) Data Aggregation SENSING 1) Food Image sensing 2) Audio sensing DATA AGGREGATION 1) Actual Size Scaling 2) Food Modeling & Volume Calculation DATA PROCESSING 1) Audio Signal Processing for distance measurement 2) Food Item Segmentation

Slide 12

Slide 12 text

SENSING Take a top-down as well as a side view photograph Ensure they are respectively parallel and perpendicular to surface Echo ranging is used with a Maximum Length Sequence (MLS) MLS is a pseudorandom binary sequence (contains 0's and 1's) Length of MLS = 2^n -1 Start recording the effect of emiting audio signal while taking photographs. Stop recording when done with capturing photographs. 1) FOOD IMAGE SENSING 2) AUDIO SENSING

Slide 13

Slide 13 text

DATA PROCESSING 1) AUDIO SIGNAL PROCESSING FOR DISTANCE MEASUREMENT

Slide 14

Slide 14 text

DATA PROCESSING Two Tasks: Food segmentation Task Container Classification Task 2) FOOD ITEM SEGMENTATION Hence, this is a Multi-task deep learning problem.

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

DATA AGGREGATION 1) ACTUAL SIZE SCALING 2) FOOD MODELING AND VOLUME CALCULATION

Slide 17

Slide 17 text

PART 5: EVALUATION

Slide 18

Slide 18 text

MLS RANGING 1) Ranging Accuracy 2) Ranging Robustness FOOD IMAGE SEGMENTATION 1) Dataset 2) Experimental Set Up 3) Evaluation Metric 4) Performance FOOD VOLUME ESTIMATION Testing it out

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

PART 6: CONCLUSION

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

PART 7: EPILOGUE REAL WORLD IMPLEMENTATIONS

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

THANK YOU