Slide 35
Slide 35 text
35
ܭଌͷݚڀಈɹτϨʔε
อଘ ੳ
τϨʔε
গͷՁͷ͋ΔτϨʔε
ͷΈΛબ͢Δɻ
ނোݕޙʹ࣌ؒΛḪͬͯશ
τϨʔεΛܭଌɾऩू
ϨτϩΞΫςΟϒαϯϓϦϯά
τϨʔεͷߏɾ࣮ߦ࣌ؒɾ
ଟ༷ੑɾ࣮ߦ࣌ঢ়ଶʢγες
ϜϝτϦΫεʣΛߟྀ͢Δɻ
ѹॖʢશτϨʔεͷۙࣅใอ࣋ʣ
Sifter
(SoCC,2019)
Sieve
(IWCS, 2021)
STEAM
(FSE, 2023)
TraStrainer
(FSE, 2024)
τϨʔεσʔλ͔Β
ਖ਼ৗϞσϧΛߏஙɻ
ҟৗ֎ΕͱͳΔ
τϨʔεΛ༏ઌɻ
ҟৗ͚ͩͰͳ͘ߏ
తʹ࣌ؒతʹ
͍͠τϨʔεΛ༏
ઌɻ
APIɾߏɾԆɾε
ςʔλείʔυͳͲͷ
ଐੑ͝ͱʹଟ༷ੑΛҡ
࣋͢Δɻ
γεςϜͷঢ়ଶมԽʢϝ
τϦΫεͷมԽʣʹؔ
࿈͢Δ߹͍͕ߴ͍τ
ϨʔεΛ༏ઌ͢Δɻ
(Microsoft)
ػցֶशϞσϧʹΑΔςΠϧ
αϯϓϦϯά τϨʔεΛڞ௨෦ͱՄม෦ʹ
ղ͠ɺॏෳഉআɻ
Sifter: Las-Casas, Pedro, et al. "Sifter: Scalable sampling for distributed traces, without feature engineering." SoCC. 2019.
Sieve: Huang, Zicheng, et al. "Sieve: Attention-based sampling of end-to-end trace data in distributed microservice systems.” ICWS, 2021.
STEAM: He, Shilin, et al. "STEAM: Observability-preserving trace sampling.” ESEC/FSE, 2023.
TraStrainer: Huang, Haiyu, et al. "Trastrainer: Adaptive sampling for distributed traces with system runtime state.” ESEC/FSE, 2024.